organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-(phenyl­sulfon­yl)naphtho[1,2-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 December 2007; accepted 10 January 2008; online 16 January 2008)

In the title mol­ecule, C19H14O3S, the phenyl ring forms a dihedral angle of 69.13 (6)° with the plane of the naphthofuran fragment, being slightly tilted towards it. The crystal packing exhibits ππ inter­actions between the benzene rings from neighbouring mol­ecules [centroid–centroid distance = 3.616 (4) Å] and weak C—H⋯O and C—H⋯π inter­actions.

Related literature

The crystal structure of 2-methyl-3-(methyl­sulfin­yl)naphtho[1,2-b]furan has been reported by Choi et al. (2006[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3883-o3884.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14O3S

  • Mr = 322.36

  • Orthorhombic, P n a 21

  • a = 8.198 (4) Å

  • b = 18.589 (8) Å

  • c = 10.049 (4) Å

  • V = 1531.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8102 measured reflections

  • 2714 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.05

  • 2714 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1125 Friedel pairs

  • Flack parameter: 0.04 (7)

Table 1
Selected interatomic distances (Å)

Cg2 and Cg3 are the centroids of the C2–C5/C10/C11 benzene ring and the C5–C10 benzene ring, respectively.

Cg2⋯Cg3i 3.616 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the O1/C12/C1/C2/C11 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg1i 0.98 2.64 3.483 (3) 144
C8—H8⋯O3ii 0.95 2.51 3.406 (3) 157
C16—H16⋯O3iii 0.95 2.51 3.430 (3) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing study of 2-methylnaphtho[1,2-b]furan derivatives, the crystal structure of 2-methyl-3-(methylsulfinyl)naphtho[1,2-b]furan has been recently reported (Choi et al., 2006). Herein we present the molecular and crystal structure of the title compound, (I).

In (I) (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the thirteen constituent atoms. The crystal packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between adjacent benzene rings. The Cg2···Cg3i distance is 3.616 (4) Å (Table 1; Cg2 and Cg3 are the centroids of the C2—C5/C10/C11 benzene ring and the C5—C10 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by CH2—H···π interactions between the methyl group and the furan ring of the naphthofuran unit, with a C13—H13A···Cg1i separation of 2.64 Å (Fig. 2 and Table 2; Cg1 is the centroid of the O1/C12/C1/C2/C11 furan ring; symmetry code as in Fig. 2). Additionally, the weak hydrogen bonds were observed; one between the benzene H atom of naphthofuran unit and the O atom of sulfonyl group, with a C8—H8···O3ii, a second between the benzene H atom of phenylsulfonyl group and adjacent O atom of sulfonyl group, with a C16—H16···O3iii (Fig. 2 and Table 2; symmetry code as in Fig. 2).

Related literature top

The crystal structure of 2-methyl-3-(methylsulfinyl)naphtho[1,2-b]furan has been reported by Choi et al. (2006).

Experimental top

3-Chloroperbenzoic acid (77%, 560 mg, 2.5 mmol) was added in small portions to a stirred solution of 2-methyl-3-(phenylsulfanyl)naphtho[1,2-b] furan (348 mg, 1.2 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a pale yellow solid [yield 84%, m.p. 412–413 K; Rf = 0.64 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dilute solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···O interactions (dotted lines) in the title compound [symmetry codes: (i) x - 1/2, -y + 1/2, z; (ii) -x + 3/2, y + 1/2, z - 1/2; (iii) x - 1, y, z; (iv) x + 1/2, -y + 1/2, z; (v) x + 1, y, z; (vi) -x + 3/2, y - 1/2, z + 1/2.]
2-Methyl-3-(phenylsulfonyl)naphtho[1,2-b]furan top
Crystal data top
C19H14O3SF(000) = 672
Mr = 322.36Dx = 1.398 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5173 reflections
a = 8.198 (4) Åθ = 2.2–28.1°
b = 18.589 (8) ŵ = 0.22 mm1
c = 10.049 (4) ÅT = 173 K
V = 1531.4 (11) Å3Block, yellow
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
Detector resolution: 10.0 pixels mm-1h = 710
ϕ and ω scansk = 2222
8102 measured reflectionsl = 1211
2714 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2714 reflectionsΔρmax = 0.26 e Å3
208 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1125 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C19H14O3SV = 1531.4 (11) Å3
Mr = 322.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.198 (4) ŵ = 0.22 mm1
b = 18.589 (8) ÅT = 173 K
c = 10.049 (4) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2538 reflections with I > 2σ(I)
8102 measured reflectionsRint = 0.048
2714 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.21 e Å3
2714 reflectionsAbsolute structure: Flack (1983), 1125 Friedel pairs
208 parametersAbsolute structure parameter: 0.04 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44268 (6)0.07870 (2)0.60161 (6)0.02617 (13)
O10.51082 (18)0.27348 (7)0.46110 (15)0.0291 (3)
O20.3904 (2)0.09804 (9)0.73361 (15)0.0373 (4)
O30.58124 (17)0.03221 (8)0.58544 (17)0.0369 (4)
C10.4858 (2)0.15710 (10)0.5141 (2)0.0253 (4)
C20.5822 (2)0.16115 (11)0.3939 (2)0.0260 (4)
C30.6620 (3)0.11149 (11)0.3089 (2)0.0293 (4)
H30.65650.06120.32540.035*
C40.7466 (3)0.13772 (11)0.2031 (2)0.0314 (5)
H40.80120.10480.14600.038*
C50.7564 (3)0.21297 (11)0.1745 (2)0.0296 (4)
C60.8432 (3)0.23949 (14)0.0629 (2)0.0379 (5)
H60.89600.20670.00450.045*
C70.8521 (3)0.31235 (14)0.0381 (3)0.0448 (6)
H70.91110.32930.03700.054*
C80.7749 (3)0.36149 (12)0.1225 (3)0.0421 (6)
H80.78280.41150.10420.051*
C90.6884 (3)0.33880 (11)0.2309 (2)0.0342 (5)
H90.63550.37260.28720.041*
C100.6786 (3)0.26389 (11)0.2582 (2)0.0276 (4)
C110.5932 (2)0.23396 (10)0.3665 (2)0.0270 (4)
C120.4468 (2)0.22595 (11)0.5500 (2)0.0282 (4)
C130.3579 (3)0.25867 (13)0.6634 (2)0.0375 (5)
H13A0.26720.28780.62970.045*
H13B0.43250.28930.71430.045*
H13C0.31540.22060.72110.045*
C140.2753 (2)0.03853 (10)0.51984 (19)0.0249 (4)
C150.1181 (3)0.05753 (12)0.5593 (2)0.0312 (5)
H150.10210.09280.62650.037*
C160.0141 (3)0.02474 (14)0.5000 (2)0.0404 (5)
H160.12170.03680.52720.048*
C170.0105 (3)0.02571 (14)0.4009 (3)0.0469 (6)
H170.08050.04860.36040.056*
C180.1664 (3)0.04291 (13)0.3605 (3)0.0447 (6)
H180.18180.07670.29080.054*
C190.3008 (3)0.01150 (11)0.4204 (2)0.0327 (5)
H190.40820.02410.39370.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0274 (2)0.0262 (2)0.0250 (2)0.00075 (19)0.0024 (2)0.0041 (2)
O10.0359 (8)0.0213 (6)0.0301 (8)0.0009 (6)0.0004 (6)0.0021 (6)
O20.0459 (9)0.0419 (8)0.0241 (8)0.0059 (8)0.0011 (7)0.0014 (7)
O30.0300 (8)0.0329 (7)0.0477 (11)0.0043 (6)0.0026 (7)0.0125 (8)
C10.0254 (9)0.0224 (9)0.0282 (11)0.0009 (8)0.0043 (8)0.0008 (8)
C20.0254 (10)0.0265 (10)0.0261 (10)0.0022 (8)0.0030 (8)0.0021 (8)
C30.0337 (11)0.0226 (9)0.0317 (11)0.0016 (9)0.0024 (9)0.0003 (8)
C40.0356 (12)0.0298 (10)0.0290 (11)0.0004 (9)0.0012 (9)0.0030 (9)
C50.0321 (11)0.0337 (11)0.0229 (10)0.0027 (9)0.0040 (8)0.0025 (9)
C60.0411 (13)0.0454 (14)0.0271 (12)0.0046 (11)0.0001 (9)0.0043 (9)
C70.0469 (14)0.0538 (15)0.0337 (13)0.0117 (12)0.0025 (11)0.0163 (11)
C80.0503 (14)0.0320 (11)0.0441 (15)0.0122 (10)0.0105 (11)0.0122 (11)
C90.0381 (12)0.0278 (10)0.0366 (13)0.0050 (9)0.0084 (9)0.0021 (9)
C100.0295 (11)0.0272 (10)0.0260 (10)0.0050 (8)0.0080 (8)0.0046 (8)
C110.0287 (10)0.0237 (10)0.0286 (11)0.0013 (8)0.0042 (8)0.0021 (9)
C120.0280 (10)0.0273 (10)0.0294 (10)0.0001 (9)0.0032 (8)0.0012 (8)
C130.0426 (14)0.0349 (12)0.0349 (12)0.0055 (10)0.0026 (10)0.0042 (10)
C140.0282 (10)0.0235 (9)0.0229 (11)0.0014 (8)0.0004 (8)0.0052 (8)
C150.0327 (11)0.0338 (10)0.0271 (11)0.0014 (10)0.0036 (8)0.0036 (8)
C160.0297 (11)0.0534 (14)0.0380 (14)0.0038 (11)0.0007 (10)0.0068 (11)
C170.0412 (14)0.0608 (16)0.0386 (14)0.0207 (13)0.0045 (11)0.0009 (12)
C180.0576 (15)0.0430 (13)0.0335 (13)0.0117 (12)0.0037 (11)0.0098 (11)
C190.0354 (12)0.0311 (11)0.0316 (11)0.0021 (9)0.0058 (9)0.0032 (9)
Geometric parameters (Å, º) top
S1—O31.437 (2)C8—C91.367 (3)
S1—O21.440 (2)C8—H80.9500
S1—C11.738 (2)C9—C101.422 (3)
S1—C141.765 (2)C9—H90.9500
O1—C121.361 (3)C10—C111.409 (3)
O1—C111.378 (2)C12—C131.483 (3)
C1—C121.368 (3)C13—H13A0.9800
C1—C21.446 (3)C13—H13B0.9800
C2—C111.384 (3)C13—H13C0.9800
C2—C31.418 (3)C14—C191.381 (3)
C3—C41.360 (3)C14—C151.394 (3)
C3—H30.9500C15—C161.378 (3)
C4—C51.430 (3)C15—H150.9500
C4—H40.9500C16—C171.383 (4)
C5—C61.417 (3)C16—H160.9500
C5—C101.417 (3)C17—C181.379 (4)
C6—C71.379 (4)C17—H170.9500
C6—H60.9500C18—C191.384 (3)
C7—C81.398 (4)C18—H180.9500
C7—H70.9500C19—H190.9500
Cg2···Cg3i3.616 (4)
O3—S1—O2119.3 (1)C11—C10—C5114.7 (2)
O3—S1—C1106.6 (1)C11—C10—C9124.3 (2)
O2—S1—C1108.5 (1)C5—C10—C9121.0 (2)
O3—S1—C14107.9 (1)O1—C11—C2110.6 (2)
O2—S1—C14107.7 (1)O1—C11—C10124.5 (2)
C1—S1—C14106.1 (1)C2—C11—C10124.9 (2)
C12—O1—C11107.2 (2)O1—C12—C1110.2 (2)
C12—C1—C2107.4 (2)O1—C12—C13115.3 (2)
C12—C1—S1127.1 (2)C1—C12—C13134.5 (2)
C2—C1—S1125.3 (2)C12—C13—H13A109.5
C11—C2—C3119.1 (2)C12—C13—H13B109.5
C11—C2—C1104.6 (2)H13A—C13—H13B109.5
C3—C2—C1136.2 (2)C12—C13—H13C109.5
C4—C3—C2118.2 (2)H13A—C13—H13C109.5
C4—C3—H3120.9H13B—C13—H13C109.5
C2—C3—H3120.9C19—C14—C15121.1 (2)
C3—C4—C5122.4 (2)C19—C14—S1120.3 (2)
C3—C4—H4118.8C15—C14—S1118.6 (2)
C5—C4—H4118.8C16—C15—C14119.4 (2)
C6—C5—C10117.6 (2)C16—C15—H15120.3
C6—C5—C4121.8 (2)C14—C15—H15120.3
C10—C5—C4120.6 (2)C15—C16—C17119.8 (2)
C7—C6—C5120.8 (2)C15—C16—H16120.1
C7—C6—H6119.6C17—C16—H16120.1
C5—C6—H6119.6C18—C17—C16120.3 (2)
C6—C7—C8120.5 (2)C18—C17—H17119.9
C6—C7—H7119.7C16—C17—H17119.9
C8—C7—H7119.7C17—C18—C19120.8 (2)
C9—C8—C7121.1 (2)C17—C18—H18119.6
C9—C8—H8119.4C19—C18—H18119.6
C7—C8—H8119.4C14—C19—C18118.5 (2)
C8—C9—C10119.0 (2)C14—C19—H19120.7
C8—C9—H9120.5C18—C19—H19120.7
C10—C9—H9120.5
O3—S1—C1—C12142.38 (19)C3—C2—C11—O1178.86 (17)
O2—S1—C1—C1212.7 (2)C1—C2—C11—O10.0 (2)
C14—S1—C1—C12102.8 (2)C3—C2—C11—C100.2 (3)
O3—S1—C1—C232.34 (19)C1—C2—C11—C10179.12 (19)
O2—S1—C1—C2162.06 (16)C5—C10—C11—O1179.07 (18)
C14—S1—C1—C282.51 (18)C9—C10—C11—O11.2 (3)
C12—C1—C2—C110.1 (2)C5—C10—C11—C20.1 (3)
S1—C1—C2—C11175.74 (15)C9—C10—C11—C2179.8 (2)
C12—C1—C2—C3178.5 (2)C11—O1—C12—C10.2 (2)
S1—C1—C2—C32.9 (3)C11—O1—C12—C13177.78 (17)
C11—C2—C3—C40.0 (3)C2—C1—C12—O10.2 (2)
C1—C2—C3—C4178.5 (2)S1—C1—C12—O1175.70 (14)
C2—C3—C4—C50.5 (3)C2—C1—C12—C13177.2 (2)
C3—C4—C5—C6179.2 (2)S1—C1—C12—C131.7 (4)
C3—C4—C5—C100.9 (3)O3—S1—C14—C1922.04 (19)
C10—C5—C6—C70.5 (3)O2—S1—C14—C19152.05 (17)
C4—C5—C6—C7179.5 (2)C1—S1—C14—C1991.94 (18)
C5—C6—C7—C80.2 (4)O3—S1—C14—C15156.92 (16)
C6—C7—C8—C90.4 (4)O2—S1—C14—C1526.90 (19)
C7—C8—C9—C100.6 (3)C1—S1—C14—C1589.10 (18)
C6—C5—C10—C11179.43 (18)C19—C14—C15—C161.4 (3)
C4—C5—C10—C110.6 (3)S1—C14—C15—C16177.59 (17)
C6—C5—C10—C90.3 (3)C14—C15—C16—C171.0 (3)
C4—C5—C10—C9179.69 (19)C15—C16—C17—C180.5 (4)
C8—C9—C10—C11179.9 (2)C16—C17—C18—C191.6 (4)
C8—C9—C10—C50.3 (3)C15—C14—C19—C180.2 (3)
C12—O1—C11—C20.1 (2)S1—C14—C19—C18178.69 (18)
C12—O1—C11—C10178.99 (19)C17—C18—C19—C141.2 (4)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.982.643.483 (3)144
C8—H8···O3ii0.952.513.406 (3)157
C16—H16···O3iii0.952.513.430 (3)164
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H14O3S
Mr322.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)8.198 (4), 18.589 (8), 10.049 (4)
V3)1531.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8102, 2714, 2538
Rint0.048
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.05
No. of reflections2714
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21
Absolute structureFlack (1983), 1125 Friedel pairs
Absolute structure parameter0.04 (7)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected interatomic distances (Å) top
Cg2···Cg3i3.616 (4)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.982.643.483 (3)143.8
C8—H8···O3ii0.952.513.406 (3)156.7
C16—H16···O3iii0.952.513.430 (3)164.0
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z1/2; (iii) x1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3883–o3884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds