metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­cobalt(II)]-μ-2,2′-di­hydroxy-5,5′-diazenediyldibenzoato]

aDepartment of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: tyxcn@163.com

(Received 19 November 2007; accepted 19 December 2007; online 4 January 2008)

In the title compound, [Co(C14H8N2O6)(H2O)4]n, each 5,5′-diazenediylbis(2-hydroxy­benzoato) ligand acts as a dicarboxyl­ate bridge, leading to the formation of polymeric chains running in the [[\overline{1}]10] direction. The Co atom is hexa­coordinated in a distorted octa­hedral geometry by six O atoms [Co—O = 2.039 (4)–2.115 (4) Å] from two ligands and four water mol­ecules. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds build up a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Klotz (2005[Klotz, U. (2005). Dig. Liver Dis. 37, 381-388.]); Tang, Tan & Cao (2007[Tang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175-m1176.]); Tang, Tan, Chen et al. (2007[Tang, Y. Z., Tan, Y. H., Chen, S. H. & Cao, Y. W. (2007). Z. Anorg. Allg. Chem. 633, 332-335.]); Tang, Yang et al. (2007[Tang, Y. Z., Yang, S. P., Tan, Y. H., Chen, S. H., Cao, Y. W. & Wang, P. (2007). Chin. J. Inorg. Chem. 23, 70-74.]); Riordan & Blair (1979[Riordan, J. E. & Blair, H. S. (1979). Polymer, 20, 196-202.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H8N2O6)(H2O)4]

  • Mr = 431.22

  • Monoclinic, P 21 /c

  • a = 9.5152 (14) Å

  • b = 11.2452 (17) Å

  • c = 16.194 (2) Å

  • β = 106.687 (2)°

  • V = 1659.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 (2) K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.917

  • 11094 measured reflections

  • 3427 independent reflections

  • 1976 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 0.94

  • 3427 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6i 0.82 1.89 2.667 (5) 157
O1W—H1WB⋯N1ii 0.82 2.08 2.871 (5) 161
O2W—H2WA⋯O2 0.82 1.84 2.629 (5) 161
O3W—H3WA⋯O2i 0.82 1.88 2.682 (4) 167
O3W—H3WB⋯O4iii 0.81 2.23 2.899 (5) 141
O4W—H4WA⋯N2i 0.82 2.35 3.074 (5) 148
O4W—H4WB⋯O6iv 0.82 1.88 2.665 (4) 159
O3—H3A⋯O1 0.82 1.80 2.521 (5) 147
O4—H4A⋯O5 0.82 1.82 2.541 (4) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z; (iv) x+1, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Olsalazine - 3,3-azobis(6-hydroxybenzoic acid) - has been widely used to prevent and treat the inflammatory bowel diseases, such as ulcerative colitis (Klotz, 2005). In previous work, we have synthesized a serial of Zn (Tang, Tan, Chen & Cao, 2007), Cd and Co (Tang, Yang et al., 2007) complexes with phenanthroline as auxiliary ligand. Also we have reported a Mn complex of olsalazine(Tang, Tan & Cao, 2007), however the cobalt complex with single olsalazine as building block have not been reported yet, Here we reported the crystal structure of the title compound, (I)- a new cobalt complex of olsalazine.

In (I), the Co atom is hexacoordinated (Fig. 1) by two O atoms from two L ligands (H2L=3,3-azo-bis(6-hydroxybenzoic acid)) cis to each other and four water molecules in a distorted octahedral geometry. Each ligand L acts as a carboxylate bridge, that leads to the formation of polymeric chain running in the [-110] direction. Intermolecular O—H···O and O—H···N hydrogen bonds build up a three dimensional supramolecular structure (Table 1).

Related literature top

For related literature, see: Klotz (2005); Tang, Tan & Cao (2007); Tang, Tan, Chen et al. (2007); Tang, Yang et al. (2007); Riordan & Blair (1979).

Refinement top

All H atoms attached to C atoms and O(hydroxyl) atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.86 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.82 (1) Å and H···H = 1.34 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, the H atoms were treated as riding on their parent O atoms.

The crystal used was twinned with two domains in the ratio 0.076/0.924. The twin law is [1.00 0.00 0.00 0.00 - 1.00 0.00 - 1.00 0.00 - 1.00].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Partial view of the polymeric chain in (I), showing the atom-labelling-scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z]
catena-Poly[[tetraaquacobalt(II)]-µ-2,2'-dihydroxy-5,5'- diazenediyldibenzoato] top
Crystal data top
[Co(C14H8N2O6)(H2O)4]F(000) = 884
Mr = 431.22Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 935 reflections
a = 9.5152 (14) Åθ = 2.2–26°
b = 11.2452 (17) ŵ = 1.10 mm1
c = 16.194 (2) ÅT = 296 K
β = 106.687 (2)°Block, red
V = 1659.8 (4) Å30.10 × 0.08 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3427 independent reflections
Radiation source: fine-focus sealed tube1976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.898, Tmax = 0.918k = 1414
11094 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
3427 reflectionsΔρmax = 0.50 e Å3
246 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (11)
Crystal data top
[Co(C14H8N2O6)(H2O)4]V = 1659.8 (4) Å3
Mr = 431.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5152 (14) ŵ = 1.10 mm1
b = 11.2452 (17) ÅT = 296 K
c = 16.194 (2) Å0.10 × 0.08 × 0.08 mm
β = 106.687 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3427 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1976 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.918Rint = 0.062
11094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.94Δρmax = 0.50 e Å3
3427 reflectionsΔρmin = 0.44 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.71433 (7)0.14001 (5)0.21254 (4)0.0333 (2)
O1W0.8824 (4)0.2527 (3)0.2134 (2)0.0515 (9)
H1WA0.92510.30020.25060.077*
H1WB0.87990.27800.16540.077*
O2W0.6621 (4)0.2503 (3)0.3053 (2)0.0537 (10)
H2WA0.59120.28420.27260.080*
H2WB0.63520.21270.34150.080*
O3W0.5405 (4)0.0277 (3)0.2068 (2)0.0575 (10)
H3WA0.54940.02630.24180.086*
H3WB0.51440.00280.15790.086*
O4W0.8418 (4)0.0398 (3)0.31539 (19)0.0455 (9)
H4WA0.89330.06630.36100.068*
H4WB0.89000.00060.29120.068*
N20.0915 (4)0.6415 (3)0.0012 (2)0.0366 (9)
N10.1224 (4)0.6059 (3)0.0651 (2)0.0374 (10)
O10.5775 (4)0.2345 (3)0.10743 (19)0.0402 (8)
O20.4732 (4)0.3607 (3)0.1776 (2)0.0542 (10)
O30.5168 (4)0.2395 (3)0.0547 (2)0.0609 (11)
H3A0.55870.21740.00550.091*
O40.3150 (4)1.0087 (3)0.0450 (2)0.0533 (10)
H4A0.31261.03950.00120.080*
O50.2290 (4)1.0400 (3)0.1171 (2)0.0455 (9)
O60.0537 (4)0.9267 (3)0.2009 (2)0.0637 (12)
C10.4906 (5)0.3199 (4)0.1097 (3)0.0358 (11)
C20.4027 (5)0.3698 (4)0.0249 (3)0.0326 (10)
C30.4191 (6)0.3262 (4)0.0520 (3)0.0399 (12)
C40.3349 (6)0.3724 (4)0.1303 (3)0.0523 (15)
H40.34270.34080.18190.063*
C50.2420 (5)0.4632 (4)0.1309 (3)0.0441 (13)
H50.18850.49540.18350.053*
C60.2240 (5)0.5101 (4)0.0547 (3)0.0346 (11)
C70.3054 (5)0.4617 (4)0.0228 (3)0.0356 (11)
H70.29440.49140.07420.043*
C80.0120 (5)0.7371 (4)0.0142 (3)0.0348 (11)
C90.1058 (5)0.7662 (4)0.0956 (3)0.0414 (12)
H90.10240.72290.14390.050*
C100.2027 (6)0.8587 (4)0.1037 (3)0.0446 (12)
H100.26210.87980.15800.054*
C110.2134 (5)0.9212 (4)0.0320 (3)0.0386 (12)
C120.1231 (5)0.8923 (4)0.0500 (3)0.0351 (11)
C130.0236 (6)0.8005 (4)0.0566 (3)0.0419 (12)
H130.03770.78080.11080.050*
C140.1338 (5)0.9566 (4)0.1286 (3)0.0403 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0379 (4)0.0295 (3)0.0312 (3)0.0035 (3)0.0078 (3)0.0014 (3)
O1W0.060 (2)0.055 (2)0.0364 (19)0.0171 (19)0.0088 (17)0.0010 (17)
O2W0.061 (3)0.060 (2)0.040 (2)0.023 (2)0.0160 (18)0.0057 (17)
O3W0.054 (2)0.061 (2)0.047 (2)0.015 (2)0.0007 (17)0.0173 (19)
O4W0.054 (2)0.044 (2)0.0359 (18)0.0113 (17)0.0085 (16)0.0011 (15)
N20.042 (2)0.0304 (19)0.035 (2)0.0096 (19)0.0072 (18)0.0031 (19)
N10.039 (3)0.036 (2)0.038 (2)0.0101 (18)0.0122 (18)0.0017 (17)
O10.048 (2)0.0362 (18)0.0361 (18)0.0122 (16)0.0121 (16)0.0027 (15)
O20.070 (3)0.055 (2)0.0340 (18)0.028 (2)0.0094 (18)0.0057 (17)
O30.080 (3)0.062 (2)0.042 (2)0.045 (2)0.019 (2)0.0083 (18)
O40.061 (2)0.052 (2)0.0403 (19)0.0296 (19)0.0029 (17)0.0053 (17)
O50.054 (2)0.0407 (19)0.0385 (19)0.0189 (18)0.0075 (16)0.0045 (16)
O60.079 (3)0.067 (3)0.035 (2)0.043 (2)0.0014 (19)0.0079 (19)
C10.039 (3)0.030 (2)0.037 (3)0.004 (2)0.008 (2)0.004 (2)
C20.036 (3)0.031 (2)0.030 (2)0.002 (2)0.009 (2)0.003 (2)
C30.043 (3)0.035 (3)0.045 (3)0.014 (2)0.018 (2)0.000 (2)
C40.071 (4)0.052 (3)0.033 (3)0.025 (3)0.014 (3)0.003 (3)
C50.050 (3)0.045 (3)0.035 (3)0.017 (3)0.008 (2)0.006 (2)
C60.041 (3)0.028 (2)0.035 (3)0.007 (2)0.012 (2)0.001 (2)
C70.043 (3)0.031 (2)0.037 (3)0.003 (2)0.017 (2)0.004 (2)
C80.036 (3)0.030 (2)0.039 (3)0.010 (2)0.012 (2)0.001 (2)
C90.045 (3)0.047 (3)0.031 (3)0.010 (2)0.009 (2)0.005 (2)
C100.055 (3)0.048 (3)0.026 (2)0.015 (3)0.004 (2)0.004 (2)
C110.041 (3)0.033 (2)0.039 (3)0.006 (2)0.006 (2)0.001 (2)
C120.037 (3)0.032 (3)0.033 (2)0.005 (2)0.004 (2)0.0027 (19)
C130.050 (3)0.037 (3)0.034 (3)0.014 (2)0.003 (2)0.002 (2)
C140.038 (3)0.039 (3)0.038 (3)0.012 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Co1—O1W2.037 (3)O5—C141.280 (5)
Co1—O3W2.062 (3)O5—Co1ii2.103 (3)
Co1—O4W2.087 (3)O6—C141.245 (5)
Co1—O5i2.103 (3)C1—C21.497 (6)
Co1—O12.110 (3)C2—C71.381 (6)
Co1—O2W2.115 (3)C2—C31.388 (6)
O1W—H1WA0.8195C3—C41.391 (7)
O1W—H1WB0.8219C4—C51.349 (6)
O2W—H2WA0.8220C4—H40.9300
O2W—H2WB0.8212C5—C61.397 (6)
O3W—H3WA0.8183C5—H50.9300
O3W—H3WB0.8089C6—C71.383 (6)
O4W—H4WA0.8158C7—H70.9300
O4W—H4WB0.8205C8—C131.383 (6)
N2—N11.257 (5)C8—C91.401 (6)
N2—C81.430 (6)C9—C101.371 (6)
N1—C61.426 (6)C9—H90.9300
O1—C11.275 (5)C10—C111.385 (6)
O2—C11.245 (5)C10—H100.9300
O3—C31.357 (5)C11—C121.398 (6)
O3—H3A0.8200C12—C131.383 (6)
O4—C111.353 (5)C12—C141.493 (6)
O4—H4A0.8200C13—H130.9300
O1W—Co1—O3W177.81 (14)C3—C2—C1120.9 (4)
O1W—Co1—O4W93.15 (13)O3—C3—C2122.5 (4)
O3W—Co1—O4W88.88 (13)O3—C3—C4117.4 (4)
O1W—Co1—O5i88.37 (14)C2—C3—C4120.2 (4)
O3W—Co1—O5i90.63 (15)C5—C4—C3119.6 (4)
O4W—Co1—O5i94.86 (12)C5—C4—H4120.2
O1W—Co1—O189.64 (14)C3—C4—H4120.2
O3W—Co1—O188.33 (13)C4—C5—C6121.7 (4)
O4W—Co1—O1177.14 (13)C4—C5—H5119.2
O5i—Co1—O184.59 (12)C6—C5—H5119.2
O1W—Co1—O2W88.52 (15)C7—C6—C5118.3 (4)
O3W—Co1—O2W92.42 (15)C7—C6—N1126.0 (4)
O4W—Co1—O2W87.20 (13)C5—C6—N1115.6 (4)
O5i—Co1—O2W176.36 (14)C2—C7—C6120.9 (4)
O1—Co1—O2W93.49 (13)C2—C7—H7119.6
Co1—O1W—H1WA129.4C6—C7—H7119.6
Co1—O1W—H1WB113.6C13—C8—C9118.6 (4)
H1WA—O1W—H1WB110.0C13—C8—N2117.2 (4)
Co1—O2W—H2WA97.5C9—C8—N2124.1 (4)
Co1—O2W—H2WB112.9C10—C9—C8119.8 (4)
H2WA—O2W—H2WB109.5C10—C9—H9120.1
Co1—O3W—H3WA120.1C8—C9—H9120.1
Co1—O3W—H3WB105.9C9—C10—C11120.9 (4)
H3WA—O3W—H3WB111.2C9—C10—H10119.5
Co1—O4W—H4WA125.8C11—C10—H10119.5
Co1—O4W—H4WB101.2O4—C11—C10117.4 (4)
H4WA—O4W—H4WB111.2O4—C11—C12122.3 (4)
N1—N2—C8114.1 (3)C10—C11—C12120.3 (4)
N2—N1—C6117.2 (4)C13—C12—C11117.9 (4)
C1—O1—Co1127.7 (3)C13—C12—C14120.5 (4)
C3—O3—H3A109.5C11—C12—C14121.6 (4)
C11—O4—H4A109.5C8—C13—C12122.5 (4)
C14—O5—Co1ii127.3 (3)C8—C13—H13118.8
O2—C1—O1123.7 (4)C12—C13—H13118.8
O2—C1—C2119.4 (4)O6—C14—O5123.4 (4)
O1—C1—C2116.9 (4)O6—C14—C12119.9 (4)
C7—C2—C3119.3 (4)O5—C14—C12116.7 (4)
C7—C2—C1119.8 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iii0.821.892.667 (5)157
O1W—H1WB···N1iv0.822.082.871 (5)161
O2W—H2WA···O20.821.842.629 (5)161
O3W—H3WA···O2iii0.821.882.682 (4)167
O3W—H3WB···O4v0.812.232.899 (5)141
O4W—H4WA···N2iii0.822.353.074 (5)148
O4W—H4WB···O6i0.821.882.665 (4)159
O3—H3A···O10.821.802.521 (5)147
O4—H4A···O50.821.822.541 (4)147
Symmetry codes: (i) x+1, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C14H8N2O6)(H2O)4]
Mr431.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5152 (14), 11.2452 (17), 16.194 (2)
β (°) 106.687 (2)
V3)1659.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.898, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
11094, 3427, 1976
Rint0.062
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.133, 0.94
No. of reflections3427
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.821.892.667 (5)156.9
O1W—H1WB···N1ii0.822.082.871 (5)161.4
O2W—H2WA···O20.821.842.629 (5)161.4
O3W—H3WA···O2i0.821.882.682 (4)166.9
O3W—H3WB···O4iii0.812.232.899 (5)140.6
O4W—H4WA···N2i0.822.353.074 (5)147.9
O4W—H4WB···O6iv0.821.882.665 (4)159.1
O3—H3A···O10.821.802.521 (5)146.6
O4—H4A···O50.821.822.541 (4)146.6
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y1, z.
 

Acknowledgements

This work was supported by the Gannan Medical University Masters Development Foundation.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlotz, U. (2005). Dig. Liver Dis. 37, 381–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiordan, J. E. & Blair, H. S. (1979). Polymer, 20, 196–202.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175–m1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Y. Z., Tan, Y. H., Chen, S. H. & Cao, Y. W. (2007). Z. Anorg. Allg. Chem. 633, 332–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, Y. Z., Yang, S. P., Tan, Y. H., Chen, S. H., Cao, Y. W. & Wang, P. (2007). Chin. J. Inorg. Chem. 23, 70–74.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds