organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-chloro-3-nitro­benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 19 November 2007; accepted 16 December 2007; online 16 January 2008)

In the title compound, C8H6ClNO4, the mol­ecules are linked by C—H⋯O inter­actions to form a chain parallel to the a axis. The chains are further connected by slipped ππ stacking between symmetry-related benzene rings, with a centroid-to-centroid distance of 3.646 (2) Å and an inter­planar distance of 3.474 Å, resulting in an offset of 1.106 Å.

Related literature

For related literature, see: de Souza et al. (2006[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o295-o298.]); Jin & Xiao (2005[Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1237-o1238.]); Spiniello & White (2003[Spiniello, M. & White, J. M. (2003). Org. Biomol. Chem. 1, 3094-3096.]); Jönssen et al. (2004[Jönssen, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem. 6, 584-595.]); Andrews & Ladlow (2003[Andrews, S. P. & Ladlow, M. (2003). J. Org. Chem. 68, 5525-5533.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6ClNO4

  • Mr = 215.59

  • Triclinic, [P \overline 1]

  • a = 7.338 (1) Å

  • b = 7.480 (1) Å

  • c = 9.715 (2) Å

  • α = 98.39 (3)°

  • β = 94.89 (3)°

  • γ = 118.95 (3)°

  • V = 454.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 (2) K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.854, Tmax = 0.961

  • 1918 measured reflections

  • 1773 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.142

  • S = 1.12

  • 1773 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.47 3.272 (3) 145
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report here the crystal structure of the title compound, (I).

In compound (I) the nitro group is twisted with respect to the phenyl ring making a dihedral angle of 45.4 (1)° (Fig. 1). Similar twisted conformations are observed in related structures where the aryl ring bears nitro and halide adjacent to each other (de Souza et al., 2006; Spiniello & White, 2003), whereas a planar conformation is observed in other case (Jin & Xiao, 2005).

The molecules of (I) are linked by C—H···O interactions to form a chain parallel to the a axis (Table 1, Fig. 2). The chains are further connected by slippest ππ stacking between symmetry related phenyl rings with a centroit to centroid distance Cg1···Cg1i (Symmetry code: (i) 1 - x, 1 - y, 1 - z) of 3.646 (2) Å and an interplanar distance of 3.474 Å resulting in an offset of 1.106 Å.

Related literature top

For related literature, see: de Souza et al. (2006); Harms & Wocadlo (1995); Jin & Xiao (2005); Spek (2003); Spiniello & White (2003); Jönssen et al. (2004); Andrews & Ladlow (2003).

Experimental top

4-Chloro-3-nitrobenzoic acid (35.0 g, 0.174 mol) was suspended in methanol (150 ml) and cooled to 0°. Concentrated sulfuric acid (15 ml) was slowly added with stirring, and then the mixture was heated at reflux for 17 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold methanol (2*50 ml) and hexane (2*50 ml) to afford the methyl ester as a white solid (31.8 g, 85%) (Andrews & Ladlow, 2003; Jönssen et al., 2004). Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent C atoms with C—H = 0.93 Å (Caromatic) and 0.96 Å (Cmethyl) with Uiso(H) = 1.2(Caromatic) or 1.5(methyl)Ueq (C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I) showing the formation of the chain through C—H···O hydrogen bonds indicated as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 1 + x, y, z]
Methyl 4-chloro-3-nitrobenzoate top
Crystal data top
C8H6ClNO4Z = 2
Mr = 215.59F(000) = 220
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.338 (1) ÅCell parameters from 25 reflections
b = 7.480 (1) Åθ = 9–13°
c = 9.715 (2) ŵ = 0.41 mm1
α = 98.39 (3)°T = 293 K
β = 94.89 (3)°Box, colourless
γ = 118.95 (3)°0.40 × 0.10 × 0.10 mm
V = 454.1 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 98
Tmin = 0.854, Tmax = 0.961l = 1111
1918 measured reflections3 standard reflections every 200 reflections
1773 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2181P]
where P = (Fo2 + 2Fc2)/3
1773 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H6ClNO4γ = 118.95 (3)°
Mr = 215.59V = 454.1 (2) Å3
Triclinic, P1Z = 2
a = 7.338 (1) ÅMo Kα radiation
b = 7.480 (1) ŵ = 0.41 mm1
c = 9.715 (2) ÅT = 293 K
α = 98.39 (3)°0.40 × 0.10 × 0.10 mm
β = 94.89 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1389 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.854, Tmax = 0.9613 standard reflections every 200 reflections
1918 measured reflections intensity decay: none
1773 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.12Δρmax = 0.21 e Å3
1773 reflectionsΔρmin = 0.24 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2034 (5)0.0805 (6)0.0613 (3)0.0722 (9)
H1A0.34350.00800.07790.108*
H1B0.18320.01710.02480.108*
H1C0.18570.21430.05360.108*
C20.0585 (4)0.1907 (4)0.3056 (3)0.0454 (6)
C30.1131 (4)0.2225 (4)0.4166 (3)0.0417 (6)
C40.2701 (4)0.1747 (4)0.3866 (3)0.0502 (7)
H40.26720.11800.29410.060*
C50.4285 (4)0.2108 (4)0.4925 (3)0.0536 (7)
H50.53060.17690.47090.064*
C60.4376 (4)0.2965 (4)0.6299 (3)0.0497 (6)
C70.2808 (4)0.3452 (4)0.6588 (3)0.0459 (6)
C80.1197 (4)0.3055 (4)0.5547 (3)0.0425 (6)
H80.01460.33440.57710.051*
Cl0.63808 (12)0.33572 (14)0.75859 (9)0.0731 (3)
N10.2849 (4)0.4450 (4)0.8022 (2)0.0569 (6)
O10.0490 (3)0.1079 (3)0.1782 (2)0.0591 (5)
O20.1910 (3)0.2373 (3)0.3279 (2)0.0626 (6)
O30.4525 (4)0.5930 (4)0.8665 (2)0.0838 (7)
O40.1169 (4)0.3786 (4)0.8445 (2)0.0801 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.075 (2)0.089 (2)0.0466 (17)0.0412 (19)0.0021 (15)0.0024 (15)
C20.0449 (14)0.0383 (13)0.0488 (15)0.0175 (11)0.0148 (11)0.0063 (11)
C30.0406 (13)0.0343 (12)0.0489 (14)0.0170 (10)0.0144 (11)0.0086 (10)
C40.0533 (15)0.0490 (15)0.0560 (16)0.0298 (13)0.0225 (13)0.0108 (12)
C50.0475 (15)0.0572 (16)0.0691 (18)0.0328 (13)0.0226 (13)0.0198 (14)
C60.0412 (13)0.0462 (14)0.0633 (17)0.0207 (12)0.0122 (12)0.0191 (12)
C70.0466 (14)0.0388 (13)0.0491 (15)0.0187 (11)0.0126 (11)0.0085 (11)
C80.0399 (13)0.0363 (12)0.0532 (15)0.0199 (10)0.0147 (11)0.0084 (10)
Cl0.0564 (5)0.0836 (6)0.0821 (6)0.0363 (4)0.0021 (4)0.0278 (4)
N10.0682 (16)0.0606 (15)0.0451 (13)0.0349 (13)0.0112 (12)0.0106 (11)
O10.0626 (12)0.0725 (13)0.0444 (10)0.0400 (11)0.0080 (9)0.0024 (9)
O20.0584 (12)0.0832 (15)0.0574 (12)0.0468 (11)0.0118 (9)0.0049 (10)
O30.0794 (16)0.0785 (16)0.0661 (15)0.0294 (13)0.0085 (12)0.0115 (12)
O40.0839 (17)0.0938 (18)0.0647 (14)0.0446 (14)0.0324 (13)0.0128 (12)
Geometric parameters (Å, º) top
C1—O11.450 (4)C4—H40.9300
C1—H1A0.9600C5—C61.375 (4)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—C71.402 (4)
C2—O21.207 (3)C6—Cl1.725 (3)
C2—O11.324 (3)C7—C81.370 (4)
C2—C31.486 (4)C7—N11.471 (3)
C3—C81.380 (4)C8—H80.9300
C3—C41.402 (3)N1—O31.215 (3)
C4—C51.376 (4)N1—O41.220 (3)
O1—C1—H1A109.5C6—C5—H5119.6
O1—C1—H1B109.5C4—C5—H5119.6
H1A—C1—H1B109.5C5—C6—C7118.1 (3)
O1—C1—H1C109.5C5—C6—Cl118.7 (2)
H1A—C1—H1C109.5C7—C6—Cl123.1 (2)
H1B—C1—H1C109.5C8—C7—C6121.6 (2)
O2—C2—O1123.3 (3)C8—C7—N1117.2 (2)
O2—C2—C3124.1 (2)C6—C7—N1121.2 (2)
O1—C2—C3112.7 (2)C7—C8—C3120.1 (2)
C8—C3—C4118.7 (2)C7—C8—H8120.0
C8—C3—C2118.5 (2)C3—C8—H8120.0
C4—C3—C2122.8 (2)O3—N1—O4125.0 (3)
C5—C4—C3120.7 (2)O3—N1—C7117.8 (2)
C5—C4—H4119.6O4—N1—C7117.1 (2)
C3—C4—H4119.6C2—O1—C1116.9 (2)
C6—C5—C4120.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.473.272 (3)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H6ClNO4
Mr215.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.338 (1), 7.480 (1), 9.715 (2)
α, β, γ (°)98.39 (3), 94.89 (3), 118.95 (3)
V3)454.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.854, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
1918, 1773, 1389
Rint0.019
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.12
No. of reflections1773
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.473.272 (3)145.1
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAndrews, S. P. & Ladlow, M. (2003). J. Org. Chem. 68, 5525–5533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1237–o1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJönssen, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem. 6, 584–595.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSouza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o295–o298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiniello, M. & White, J. M. (2003). Org. Biomol. Chem. 1, 3094–3096.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds