organic compounds
Methyl 4-chloro-3-nitrobenzoate
aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn
In the title compound, C8H6ClNO4, the molecules are linked by C—H⋯O interactions to form a chain parallel to the a axis. The chains are further connected by slipped π–π stacking between symmetry-related benzene rings, with a centroid-to-centroid distance of 3.646 (2) Å and an interplanar distance of 3.474 Å, resulting in an offset of 1.106 Å.
Related literature
For related literature, see: de Souza et al. (2006); Jin & Xiao (2005); Spiniello & White (2003); Jönssen et al. (2004); Andrews & Ladlow (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807067219/dn2295sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067219/dn2295Isup2.hkl
4-Chloro-3-nitrobenzoic acid (35.0 g, 0.174 mol) was suspended in methanol (150 ml) and cooled to 0°. Concentrated sulfuric acid (15 ml) was slowly added with stirring, and then the mixture was heated at reflux for 17 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold methanol (2*50 ml) and hexane (2*50 ml) to afford the methyl ester as a white solid (31.8 g, 85%) (Andrews & Ladlow, 2003; Jönssen et al., 2004). Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.
All H atoms were placed geometrically and treated as riding on their parent C atoms with C—H = 0.93 Å (Caromatic) and 0.96 Å (Cmethyl) with Uiso(H) = 1.2(Caromatic) or 1.5(methyl)Ueq (C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C8H6ClNO4 | Z = 2 |
Mr = 215.59 | F(000) = 220 |
Triclinic, P1 | Dx = 1.577 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.338 (1) Å | Cell parameters from 25 reflections |
b = 7.480 (1) Å | θ = 9–13° |
c = 9.715 (2) Å | µ = 0.41 mm−1 |
α = 98.39 (3)° | T = 293 K |
β = 94.89 (3)° | Box, colourless |
γ = 118.95 (3)° | 0.40 × 0.10 × 0.10 mm |
V = 454.1 (2) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1389 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 26.0°, θmin = 2.2° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→8 |
Tmin = 0.854, Tmax = 0.961 | l = −11→11 |
1918 measured reflections | 3 standard reflections every 200 reflections |
1773 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2181P] where P = (Fo2 + 2Fc2)/3 |
1773 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C8H6ClNO4 | γ = 118.95 (3)° |
Mr = 215.59 | V = 454.1 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.338 (1) Å | Mo Kα radiation |
b = 7.480 (1) Å | µ = 0.41 mm−1 |
c = 9.715 (2) Å | T = 293 K |
α = 98.39 (3)° | 0.40 × 0.10 × 0.10 mm |
β = 94.89 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1389 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.019 |
Tmin = 0.854, Tmax = 0.961 | 3 standard reflections every 200 reflections |
1918 measured reflections | intensity decay: none |
1773 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.21 e Å−3 |
1773 reflections | Δρmin = −0.24 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.2034 (5) | 0.0805 (6) | 0.0613 (3) | 0.0722 (9) | |
H1A | −0.3435 | −0.0080 | 0.0779 | 0.108* | |
H1B | −0.1832 | 0.0171 | −0.0248 | 0.108* | |
H1C | −0.1857 | 0.2143 | 0.0536 | 0.108* | |
C2 | −0.0585 (4) | 0.1907 (4) | 0.3056 (3) | 0.0454 (6) | |
C3 | 0.1131 (4) | 0.2225 (4) | 0.4166 (3) | 0.0417 (6) | |
C4 | 0.2701 (4) | 0.1747 (4) | 0.3866 (3) | 0.0502 (7) | |
H4 | 0.2672 | 0.1180 | 0.2941 | 0.060* | |
C5 | 0.4285 (4) | 0.2108 (4) | 0.4925 (3) | 0.0536 (7) | |
H5 | 0.5306 | 0.1769 | 0.4709 | 0.064* | |
C6 | 0.4376 (4) | 0.2965 (4) | 0.6299 (3) | 0.0497 (6) | |
C7 | 0.2808 (4) | 0.3452 (4) | 0.6588 (3) | 0.0459 (6) | |
C8 | 0.1197 (4) | 0.3055 (4) | 0.5547 (3) | 0.0425 (6) | |
H8 | 0.0146 | 0.3344 | 0.5771 | 0.051* | |
Cl | 0.63808 (12) | 0.33572 (14) | 0.75859 (9) | 0.0731 (3) | |
N1 | 0.2849 (4) | 0.4450 (4) | 0.8022 (2) | 0.0569 (6) | |
O1 | −0.0490 (3) | 0.1079 (3) | 0.1782 (2) | 0.0591 (5) | |
O2 | −0.1910 (3) | 0.2373 (3) | 0.3279 (2) | 0.0626 (6) | |
O3 | 0.4525 (4) | 0.5930 (4) | 0.8665 (2) | 0.0838 (7) | |
O4 | 0.1169 (4) | 0.3786 (4) | 0.8445 (2) | 0.0801 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.075 (2) | 0.089 (2) | 0.0466 (17) | 0.0412 (19) | 0.0021 (15) | 0.0024 (15) |
C2 | 0.0449 (14) | 0.0383 (13) | 0.0488 (15) | 0.0175 (11) | 0.0148 (11) | 0.0063 (11) |
C3 | 0.0406 (13) | 0.0343 (12) | 0.0489 (14) | 0.0170 (10) | 0.0144 (11) | 0.0086 (10) |
C4 | 0.0533 (15) | 0.0490 (15) | 0.0560 (16) | 0.0298 (13) | 0.0225 (13) | 0.0108 (12) |
C5 | 0.0475 (15) | 0.0572 (16) | 0.0691 (18) | 0.0328 (13) | 0.0226 (13) | 0.0198 (14) |
C6 | 0.0412 (13) | 0.0462 (14) | 0.0633 (17) | 0.0207 (12) | 0.0122 (12) | 0.0191 (12) |
C7 | 0.0466 (14) | 0.0388 (13) | 0.0491 (15) | 0.0187 (11) | 0.0126 (11) | 0.0085 (11) |
C8 | 0.0399 (13) | 0.0363 (12) | 0.0532 (15) | 0.0199 (10) | 0.0147 (11) | 0.0084 (10) |
Cl | 0.0564 (5) | 0.0836 (6) | 0.0821 (6) | 0.0363 (4) | 0.0021 (4) | 0.0278 (4) |
N1 | 0.0682 (16) | 0.0606 (15) | 0.0451 (13) | 0.0349 (13) | 0.0112 (12) | 0.0106 (11) |
O1 | 0.0626 (12) | 0.0725 (13) | 0.0444 (10) | 0.0400 (11) | 0.0080 (9) | −0.0024 (9) |
O2 | 0.0584 (12) | 0.0832 (15) | 0.0574 (12) | 0.0468 (11) | 0.0118 (9) | 0.0049 (10) |
O3 | 0.0794 (16) | 0.0785 (16) | 0.0661 (15) | 0.0294 (13) | −0.0085 (12) | −0.0115 (12) |
O4 | 0.0839 (17) | 0.0938 (18) | 0.0647 (14) | 0.0446 (14) | 0.0324 (13) | 0.0128 (12) |
C1—O1 | 1.450 (4) | C4—H4 | 0.9300 |
C1—H1A | 0.9600 | C5—C6 | 1.375 (4) |
C1—H1B | 0.9600 | C5—H5 | 0.9300 |
C1—H1C | 0.9600 | C6—C7 | 1.402 (4) |
C2—O2 | 1.207 (3) | C6—Cl | 1.725 (3) |
C2—O1 | 1.324 (3) | C7—C8 | 1.370 (4) |
C2—C3 | 1.486 (4) | C7—N1 | 1.471 (3) |
C3—C8 | 1.380 (4) | C8—H8 | 0.9300 |
C3—C4 | 1.402 (3) | N1—O3 | 1.215 (3) |
C4—C5 | 1.376 (4) | N1—O4 | 1.220 (3) |
O1—C1—H1A | 109.5 | C6—C5—H5 | 119.6 |
O1—C1—H1B | 109.5 | C4—C5—H5 | 119.6 |
H1A—C1—H1B | 109.5 | C5—C6—C7 | 118.1 (3) |
O1—C1—H1C | 109.5 | C5—C6—Cl | 118.7 (2) |
H1A—C1—H1C | 109.5 | C7—C6—Cl | 123.1 (2) |
H1B—C1—H1C | 109.5 | C8—C7—C6 | 121.6 (2) |
O2—C2—O1 | 123.3 (3) | C8—C7—N1 | 117.2 (2) |
O2—C2—C3 | 124.1 (2) | C6—C7—N1 | 121.2 (2) |
O1—C2—C3 | 112.7 (2) | C7—C8—C3 | 120.1 (2) |
C8—C3—C4 | 118.7 (2) | C7—C8—H8 | 120.0 |
C8—C3—C2 | 118.5 (2) | C3—C8—H8 | 120.0 |
C4—C3—C2 | 122.8 (2) | O3—N1—O4 | 125.0 (3) |
C5—C4—C3 | 120.7 (2) | O3—N1—C7 | 117.8 (2) |
C5—C4—H4 | 119.6 | O4—N1—C7 | 117.1 (2) |
C3—C4—H4 | 119.6 | C2—O1—C1 | 116.9 (2) |
C6—C5—C4 | 120.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.47 | 3.272 (3) | 145 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H6ClNO4 |
Mr | 215.59 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.338 (1), 7.480 (1), 9.715 (2) |
α, β, γ (°) | 98.39 (3), 94.89 (3), 118.95 (3) |
V (Å3) | 454.1 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.40 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.854, 0.961 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1918, 1773, 1389 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.142, 1.12 |
No. of reflections | 1773 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.24 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.47 | 3.272 (3) | 145.1 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors thank the Center for Testing and Analysis, Nanjing University, for support.
References
Andrews, S. P. & Ladlow, M. (2003). J. Org. Chem. 68, 5525–5533. Web of Science CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1237–o1238. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jönssen, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem. 6, 584–595. Web of Science PubMed Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o295–o298. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spiniello, M. & White, J. M. (2003). Org. Biomol. Chem. 1, 3094–3096. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of benzoic acid are important chemical materials. We report here the crystal structure of the title compound, (I).
In compound (I) the nitro group is twisted with respect to the phenyl ring making a dihedral angle of 45.4 (1)° (Fig. 1). Similar twisted conformations are observed in related structures where the aryl ring bears nitro and halide adjacent to each other (de Souza et al., 2006; Spiniello & White, 2003), whereas a planar conformation is observed in other case (Jin & Xiao, 2005).
The molecules of (I) are linked by C—H···O interactions to form a chain parallel to the a axis (Table 1, Fig. 2). The chains are further connected by slippest π–π stacking between symmetry related phenyl rings with a centroit to centroid distance Cg1···Cg1i (Symmetry code: (i) 1 - x, 1 - y, 1 - z) of 3.646 (2) Å and an interplanar distance of 3.474 Å resulting in an offset of 1.106 Å.