organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination at 113 K of 2,2-tetra­methyl­ene-1,2-di­hydro­quinazolin-4(3H)-one

aSchool of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 20 November 2007; accepted 12 December 2007; online 16 January 2008)

The title compound {systematic name: spiro­[cyclo­pentane-1,2′(1′H)-quinazolin]-4′(3′H)-one]}, C12H14N2O, has been reported previously [Klemm, Weakley, Gilbertson & Song (1998[Klemm, L. H., Weakley, T. J. R., Gilbertson, R. D. & Song, Y. H. (1998). J. Heterocycl. Chem. 35, 1269-1273.]). J. Heterocycl Chem. 35, 1269–1273]. Its structure has been redetermined at 113 K with greater precision for all data. The mol­ecule is built up from two fused six-membered rings and one five-membered ring linked through a spiro C atom. The pyrimidine ring has an envelope conformation and the cyclopentane ring adopts a distorted boat form. There are inter­molecular N—H⋯O hydrogen bonds, which form a two-dimensional sheet parallel to the (001) plane.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Shi et al. (2004[Shi, D. Q., Rong, L. C., Wang, J. X., Wang, X. S., Tu, S. J. & Hu, H. W. (2004). Chem. J. Chin. Univ. 25, 2051-2053.]); Summers et al. (1986[Summers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K. & Kling, A. (1986). N. Engl. J. Med. 315, 1241-1245.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O

  • Mr = 202.25

  • Orthorhombic, P b c a

  • a = 10.3872 (12) Å

  • b = 12.0252 (13) Å

  • c = 16.3027 (19) Å

  • V = 2036.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 (2) K

  • 0.26 × 0.24 × 0.16 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.972, Tmax = 0.984

  • 23533 measured reflections

  • 2403 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.09

  • 2403 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.857 (9) 2.043 (9) 2.8936 (12) 171.2 (14)
N2—H2⋯O1ii 0.857 (9) 2.077 (9) 2.9303 (13) 173.3 (14)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

When we used 2-aminobenzonitrile and cyclopentanone in presence of zinc chloride to synthesize tacrine (Summers et al., 1986) derivative, the unexpected spiro compound (I) (Scheme 1), was obtained. Its structure has been already reported (Klemm et al., 1998), however, as we were investigating the molecular and supramolecular architecture of related compounds, its structural redetermination at lower temperature (113 K) has been undertaken

The molecular structure of (I) is built up with two fused six membered ring and a five membered ring linked through a spiro C atom (Fig. 1). The pyrimidine ring has an envelope conformation with puckering parameters Q=0.3821 (11) Å, Θ= 115.21 (16)° and ϕ= 108.70 (19)° (Cremer & Pople, 1975). The five-membered ring displays an enveloppe conformation at C12 with puckering parameters Q(2)= O.3925 (15)Å and ϕ(2)= 319.8 (2)\%. The geometry of the fused rings compares well with the related 3-phenyl-1,2-dihydroquinazolin-4(3H)-one derivative (Shi et al., 2004).

The crystal structure of (I) is stabilized by the interplay of N—H···O interactions. The two N—H groups form N—H···O hydrogen bonds with the ketone O atom of symmetry related molecules building a R22(8) graph set motif (Etter et al., 1990; Bernstein et al., 1995). Those motifs formed with N—H···O hydrogen bonds link to each other building a two dimensionnal network parallel to the (0 0 1) plane (Fig. 2, Table 1).

Related literature top

For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Etter et al. (1990); Shi et al. (2004); Summers et al. (1986).

Experimental top

2,2-Tetramethylene-1,2-dihydroquinazolin-4(3H)-one (I) was prepared from the reflux of 2-aminobenzonitrile (1 mmol) with cyclopentanone (1 mmol) in presence of zinc chloride (1.2 mmol) in 10 ml DMF for 1.5 h. Then the reaction mixture was cooled and quenched with water and the precipitate was separated by filtration. The filtration residue was dispersed into water and titrated to pH 12–13 by 20% sodium hydroxide. After filtration, the product was obtained in 70% yield by column chromatography (200–300 mesh silica gel, ethyl acetate–petroleum with 1:2).

The single-crystal of (I) was cultured from a solution of ethanol by slow evaporation at room temperature.

Spectra data: IR (KBr, cm-1): 3289, 3166, 2934, 1638, 1613, 1429; 1H NMR (DMSO-d6) δH: 1.75–2.08 (8H, m, C4H8), 6.07 (1H, s, NH), 6.73 (2H, dd, J=7.8, 8.0 Hz, ArH), 7.19 (1H, s, NH), 7.24–7.26 (1H, m, J=7.2 Hz, ArH), 7.73 (1H, d, J=8.0 Hz, ArH); 13C NMR (DMSO-d6) δC: 21.97 (2 C), 38.88 (2 C), 77.05, 114.32, 114.57, 116.53, 127.23, 132.99, 147.49, 163.42; MS (ESI): m/z (%) =203.1 (100) [M+H]+; C12H14N2O: calcd. C 71.26, H 6.98, N 13.85; found C 71.38, H 6.71, N 13.49.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C or N). H atoms of NH group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.85 (1) Å) with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labelling scheme. Displacement elipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing showing one sheet of molecules connected by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bondings have been omitted for clarity.
spiro[cyclopentane-1,2'(1'H)-quinazolin]-4'(3'H)-one] top
Crystal data top
C12H14N2OF(000) = 864
Mr = 202.25Dx = 1.319 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 5598 reflections
a = 10.3872 (12) Åθ = 2.6–27.9°
b = 12.0252 (13) ŵ = 0.09 mm1
c = 16.3027 (19) ÅT = 113 K
V = 2036.3 (4) Å3Prism, colorless
Z = 80.26 × 0.24 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
2403 independent reflections
Radiation source: rotating anode2200 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1515
Tmin = 0.972, Tmax = 0.984l = 2121
23533 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.9123P]
where P = (Fo2 + 2Fc2)/3
2403 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N2OV = 2036.3 (4) Å3
Mr = 202.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.3872 (12) ŵ = 0.09 mm1
b = 12.0252 (13) ÅT = 113 K
c = 16.3027 (19) Å0.26 × 0.24 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
2403 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2200 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.984Rint = 0.033
23533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
2403 reflectionsΔρmin = 0.23 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08554 (8)0.58043 (6)0.58072 (5)0.01704 (19)
N10.14762 (9)0.42225 (8)0.51639 (6)0.0162 (2)
H10.0821 (11)0.4272 (12)0.4846 (8)0.019*
N20.30566 (10)0.30494 (8)0.57191 (6)0.0176 (2)
H20.3437 (13)0.2417 (9)0.5745 (9)0.021*
C10.27524 (10)0.48724 (9)0.62879 (6)0.0149 (2)
C20.34067 (10)0.38442 (9)0.62795 (7)0.0155 (2)
C30.43548 (11)0.36400 (10)0.68791 (7)0.0189 (2)
H30.47780.29590.68910.023*
C40.46564 (11)0.44475 (10)0.74485 (7)0.0208 (3)
H40.52950.43080.78350.025*
C50.40171 (12)0.54737 (10)0.74554 (7)0.0210 (3)
H50.42320.60130.78400.025*
C60.30602 (11)0.56750 (9)0.68820 (7)0.0186 (2)
H60.26180.63470.68910.022*
C70.16430 (10)0.50191 (9)0.57324 (7)0.0144 (2)
C80.24515 (11)0.33881 (9)0.49553 (6)0.0148 (2)
C90.18435 (11)0.23692 (10)0.45265 (7)0.0182 (2)
H9A0.17030.17740.49180.022*
H9B0.10230.25680.42830.022*
C100.27944 (13)0.20002 (11)0.38614 (9)0.0300 (3)
H10A0.30380.12290.39420.036*
H10B0.24100.20750.33220.036*
C110.39717 (12)0.27571 (10)0.39391 (8)0.0229 (3)
H11A0.46200.24240.42900.027*
H11B0.43480.29060.34060.027*
C120.34353 (11)0.38216 (10)0.43211 (7)0.0195 (2)
H12A0.30190.42820.39110.023*
H12B0.41110.42480.45850.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0156 (4)0.0139 (4)0.0217 (4)0.0012 (3)0.0010 (3)0.0011 (3)
N10.0137 (4)0.0154 (4)0.0194 (5)0.0023 (3)0.0038 (4)0.0026 (4)
N20.0213 (5)0.0138 (5)0.0178 (5)0.0050 (4)0.0044 (4)0.0006 (4)
C10.0145 (5)0.0152 (5)0.0149 (5)0.0015 (4)0.0004 (4)0.0010 (4)
C20.0144 (5)0.0165 (5)0.0155 (5)0.0010 (4)0.0016 (4)0.0010 (4)
C30.0180 (5)0.0210 (5)0.0178 (5)0.0034 (4)0.0003 (4)0.0027 (4)
C40.0179 (5)0.0287 (6)0.0157 (5)0.0010 (5)0.0031 (4)0.0020 (5)
C50.0231 (6)0.0220 (6)0.0180 (5)0.0051 (5)0.0032 (4)0.0020 (4)
C60.0204 (6)0.0161 (5)0.0194 (6)0.0017 (4)0.0002 (4)0.0007 (4)
C70.0140 (5)0.0132 (5)0.0159 (5)0.0015 (4)0.0018 (4)0.0015 (4)
C80.0141 (5)0.0134 (5)0.0168 (5)0.0015 (4)0.0010 (4)0.0008 (4)
C90.0164 (5)0.0171 (5)0.0212 (5)0.0009 (4)0.0007 (4)0.0035 (4)
C100.0310 (7)0.0266 (7)0.0324 (7)0.0065 (5)0.0113 (6)0.0128 (5)
C110.0196 (6)0.0256 (6)0.0235 (6)0.0013 (5)0.0037 (5)0.0038 (5)
C120.0199 (6)0.0187 (6)0.0198 (5)0.0028 (4)0.0021 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—C71.2553 (13)C5—H50.9300
N1—C71.3442 (14)C6—H60.9300
N1—C81.4659 (14)C8—C121.5443 (15)
N1—H10.857 (9)C8—C91.5456 (15)
N2—C21.3712 (15)C9—C101.5323 (17)
N2—C81.4531 (14)C9—H9A0.9700
N2—H20.857 (9)C9—H9B0.9700
C1—C61.4041 (15)C10—C111.5297 (17)
C1—C21.4110 (15)C10—H10A0.9700
C1—C71.4762 (15)C10—H10B0.9700
C2—C31.4091 (16)C11—C121.5287 (17)
C3—C41.3794 (16)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.4014 (17)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.3857 (16)
C7—N1—C8123.96 (9)N1—C8—C12112.43 (9)
C7—N1—H1118.0 (9)N2—C8—C9110.01 (9)
C8—N1—H1117.1 (10)N1—C8—C9111.42 (9)
C2—N2—C8119.36 (9)C12—C8—C9103.60 (9)
C2—N2—H2117.6 (10)C10—C9—C8106.63 (9)
C8—N2—H2119.3 (10)C10—C9—H9A110.4
C6—C1—C2119.95 (10)C8—C9—H9A110.4
C6—C1—C7121.25 (10)C10—C9—H9B110.4
C2—C1—C7118.35 (10)C8—C9—H9B110.4
N2—C2—C3121.74 (10)H9A—C9—H9B108.6
N2—C2—C1119.31 (10)C11—C10—C9106.53 (10)
C3—C2—C1118.85 (10)C11—C10—H10A110.4
C4—C3—C2120.19 (11)C9—C10—H10A110.4
C4—C3—H3119.9C11—C10—H10B110.4
C2—C3—H3119.9C9—C10—H10B110.4
C3—C4—C5121.17 (11)H10A—C10—H10B108.6
C3—C4—H4119.4C12—C11—C10103.92 (10)
C5—C4—H4119.4C12—C11—H11A111.0
C6—C5—C4119.23 (11)C10—C11—H11A111.0
C6—C5—H5120.4C12—C11—H11B111.0
C4—C5—H5120.4C10—C11—H11B111.0
C5—C6—C1120.57 (11)H11A—C11—H11B109.0
C5—C6—H6119.7C11—C12—C8103.37 (9)
C1—C6—H6119.7C11—C12—H12A111.1
O1—C7—N1121.26 (10)C8—C12—H12A111.1
O1—C7—C1122.62 (10)C11—C12—H12B111.1
N1—C7—C1116.01 (9)C8—C12—H12B111.1
N2—C8—N1106.98 (9)H12A—C12—H12B109.1
N2—C8—C12112.46 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.04 (1)2.8936 (12)171 (1)
N2—H2···O1ii0.86 (1)2.08 (1)2.9303 (13)173 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H14N2O
Mr202.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)10.3872 (12), 12.0252 (13), 16.3027 (19)
V3)2036.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.16
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.972, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
23533, 2403, 2200
Rint0.033
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.09
No. of reflections2403
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.857 (9)2.043 (9)2.8936 (12)171.2 (14)
N2—H2···O1ii0.857 (9)2.077 (9)2.9303 (13)173.3 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We thank Beijing Institute of Technology for financial support and Naikai University for the X-ray diffraction analysis.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKlemm, L. H., Weakley, T. J. R., Gilbertson, R. D. & Song, Y. H. (1998). J. Heterocycl. Chem. 35, 1269–1273.  CrossRef CAS Google Scholar
First citationRigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationShi, D. Q., Rong, L. C., Wang, J. X., Wang, X. S., Tu, S. J. & Hu, H. W. (2004). Chem. J. Chin. Univ. 25, 2051–2053.  CAS Google Scholar
First citationSummers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K. & Kling, A. (1986). N. Engl. J. Med. 315, 1241–1245.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds