metal-organic compounds
Tetra-μ-benzoato-bis[(quinoxaline)copper(II)]
aDepartment of Fine Chemistry, Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, and bDivision of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr
The paddlewheel-type centrosymmetric dinuclear title complex, [Cu2(C7H5O2)4(C8H6N2)2], contains four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around each Cu atom, with four O atoms in the equatorial plane, is completed by an N atom of a quinoxaline molecule [Cu—N = 2.2465 (18) Å] and by the second Cu atom [Cu⋯Cu = 2.668 (5) Å]. The Cu atom is 0.216 Å out of the plane of the four O atoms.
Related literature
For the related structure, Cu2(O2CPh)4(py)2 (py = pyridine), see: Speier & Fülöp (1989). For background information, see: Cotton & Walton (1993); Pichon et al. (2007); Goto et al. (2007); Takamizawa et al. (2004); Casarin et al. (2005); Deka et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807067876/dn2301sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067876/dn2301Isup2.hkl
19.0 mg (0.1 mmol) of Cu(NO3)2.2.5H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of quinoxaline ligand (26.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.
H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included in the
in riding-motion approximation with Uiso(H) = 1.2Ueq(C).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. |
[Cu2(C7H5O2)4(C8H6N2)2] | Z = 1 |
Mr = 871.82 | F(000) = 446 |
Triclinic, P1 | Dx = 1.509 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1423 (16) Å | Cell parameters from 2414 reflections |
b = 10.3400 (17) Å | θ = 2.4–27.2° |
c = 10.5148 (17) Å | µ = 1.17 mm−1 |
α = 65.459 (2)° | T = 293 K |
β = 73.063 (3)° | Block, blue |
γ = 82.142 (3)° | 0.15 × 0.10 × 0.08 mm |
V = 959.4 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 2983 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 26.0°, θmin = 2.1° |
ϕ and ω scans | h = −6→12 |
5377 measured reflections | k = −12→12 |
3668 independent reflections | l = −11→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0403P)2] where P = (Fo2 + 2Fc2)/3 |
3668 reflections | (Δ/σ)max = 0.002 |
262 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Cu2(C7H5O2)4(C8H6N2)2] | γ = 82.142 (3)° |
Mr = 871.82 | V = 959.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.1423 (16) Å | Mo Kα radiation |
b = 10.3400 (17) Å | µ = 1.17 mm−1 |
c = 10.5148 (17) Å | T = 293 K |
α = 65.459 (2)° | 0.15 × 0.10 × 0.08 mm |
β = 73.063 (3)° |
Bruker SMART CCD area-detector diffractometer | 2983 reflections with I > 2σ(I) |
5377 measured reflections | Rint = 0.031 |
3668 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.28 e Å−3 |
3668 reflections | Δρmin = −0.41 e Å−3 |
262 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.11111 (3) | 0.47628 (3) | 0.40624 (3) | 0.03419 (11) | |
O11 | 0.99508 (16) | 0.32526 (17) | 0.43180 (19) | 0.0499 (5) | |
O12 | 1.18983 (16) | 0.63828 (16) | 0.40754 (17) | 0.0440 (4) | |
C11 | 0.8752 (2) | 0.2967 (2) | 0.5137 (2) | 0.0369 (5) | |
C12 | 0.8048 (2) | 0.1757 (2) | 0.5189 (2) | 0.0351 (5) | |
C13 | 0.8728 (3) | 0.0988 (3) | 0.4383 (3) | 0.0492 (6) | |
H13 | 0.9618 | 0.1230 | 0.3800 | 0.059* | |
C14 | 0.8095 (3) | −0.0143 (3) | 0.4433 (3) | 0.0568 (7) | |
H14 | 0.8564 | −0.0666 | 0.3897 | 0.068* | |
C15 | 0.6776 (3) | −0.0490 (3) | 0.5274 (3) | 0.0498 (7) | |
H15 | 0.6349 | −0.1247 | 0.5306 | 0.060* | |
C16 | 0.6087 (3) | 0.0279 (3) | 0.6069 (3) | 0.0470 (6) | |
H16 | 0.5191 | 0.0044 | 0.6637 | 0.056* | |
C17 | 0.6716 (2) | 0.1398 (2) | 0.6030 (2) | 0.0408 (6) | |
H17 | 0.6243 | 0.1916 | 0.6572 | 0.049* | |
O21 | 1.02164 (17) | 0.60977 (18) | 0.25640 (18) | 0.0495 (4) | |
O22 | 1.16461 (17) | 0.35143 (16) | 0.58557 (17) | 0.0452 (4) | |
C21 | 0.9089 (2) | 0.6714 (2) | 0.2873 (2) | 0.0370 (5) | |
C22 | 0.8591 (2) | 0.7841 (2) | 0.1645 (2) | 0.0382 (5) | |
C23 | 0.7344 (3) | 0.8541 (3) | 0.1901 (3) | 0.0535 (7) | |
H23 | 0.6771 | 0.8249 | 0.2837 | 0.064* | |
C24 | 0.6936 (3) | 0.9660 (3) | 0.0797 (3) | 0.0694 (9) | |
H24 | 0.6096 | 1.0123 | 0.0993 | 0.083* | |
C25 | 0.7761 (4) | 1.0094 (3) | −0.0586 (3) | 0.0678 (9) | |
H25 | 0.7497 | 1.0866 | −0.1329 | 0.081* | |
C26 | 0.8975 (3) | 0.9385 (3) | −0.0869 (3) | 0.0666 (8) | |
H26 | 0.9523 | 0.9660 | −0.1815 | 0.080* | |
C27 | 0.9401 (3) | 0.8263 (3) | 0.0233 (3) | 0.0540 (7) | |
H27 | 1.0232 | 0.7791 | 0.0026 | 0.065* | |
N31 | 1.28562 (19) | 0.41356 (19) | 0.25284 (19) | 0.0354 (4) | |
N32 | 1.4763 (2) | 0.2919 (2) | 0.0746 (2) | 0.0522 (6) | |
C31 | 1.2485 (3) | 0.3591 (3) | 0.1760 (3) | 0.0457 (6) | |
H31 | 1.1554 | 0.3601 | 0.1804 | 0.055* | |
C32 | 1.3443 (3) | 0.2991 (3) | 0.0868 (3) | 0.0519 (7) | |
H32 | 1.3115 | 0.2631 | 0.0344 | 0.062* | |
C33 | 1.5184 (2) | 0.3494 (2) | 0.1517 (3) | 0.0443 (6) | |
C34 | 1.6606 (3) | 0.3475 (3) | 0.1428 (3) | 0.0615 (8) | |
H34 | 1.7237 | 0.3059 | 0.0862 | 0.074* | |
C35 | 1.7047 (3) | 0.4059 (3) | 0.2163 (3) | 0.0684 (9) | |
H35 | 1.7984 | 0.4048 | 0.2089 | 0.082* | |
C36 | 1.6121 (3) | 0.4678 (3) | 0.3030 (3) | 0.0608 (8) | |
H36 | 1.6448 | 0.5078 | 0.3523 | 0.073* | |
C37 | 1.4736 (3) | 0.4702 (3) | 0.3163 (3) | 0.0468 (6) | |
H37 | 1.4124 | 0.5106 | 0.3753 | 0.056* | |
C38 | 1.4240 (2) | 0.4112 (2) | 0.2406 (2) | 0.0363 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03083 (17) | 0.03639 (17) | 0.04054 (18) | −0.00078 (11) | −0.00605 (12) | −0.02234 (13) |
O11 | 0.0379 (10) | 0.0541 (11) | 0.0676 (12) | −0.0115 (8) | 0.0016 (9) | −0.0407 (9) |
O12 | 0.0422 (10) | 0.0443 (10) | 0.0528 (10) | −0.0082 (8) | −0.0025 (8) | −0.0307 (8) |
C11 | 0.0375 (14) | 0.0357 (13) | 0.0414 (13) | −0.0001 (11) | −0.0138 (12) | −0.0168 (11) |
C12 | 0.0380 (13) | 0.0327 (12) | 0.0396 (13) | −0.0006 (10) | −0.0150 (11) | −0.0159 (10) |
C13 | 0.0387 (14) | 0.0505 (15) | 0.0651 (17) | −0.0080 (12) | −0.0026 (13) | −0.0344 (14) |
C14 | 0.0577 (18) | 0.0534 (17) | 0.0745 (19) | −0.0017 (14) | −0.0120 (15) | −0.0430 (15) |
C15 | 0.0589 (18) | 0.0380 (14) | 0.0593 (16) | −0.0103 (12) | −0.0237 (14) | −0.0174 (12) |
C16 | 0.0423 (15) | 0.0473 (15) | 0.0485 (15) | −0.0119 (12) | −0.0099 (12) | −0.0141 (12) |
C17 | 0.0433 (14) | 0.0411 (14) | 0.0403 (13) | −0.0041 (11) | −0.0112 (11) | −0.0172 (11) |
O21 | 0.0420 (10) | 0.0636 (11) | 0.0481 (10) | 0.0139 (9) | −0.0157 (8) | −0.0291 (9) |
O22 | 0.0435 (10) | 0.0467 (10) | 0.0421 (10) | 0.0063 (8) | −0.0103 (8) | −0.0171 (8) |
C21 | 0.0380 (14) | 0.0378 (13) | 0.0463 (14) | −0.0037 (11) | −0.0137 (12) | −0.0246 (11) |
C22 | 0.0433 (14) | 0.0392 (13) | 0.0408 (13) | −0.0027 (11) | −0.0134 (11) | −0.0220 (11) |
C23 | 0.0600 (18) | 0.0604 (17) | 0.0413 (14) | 0.0139 (14) | −0.0151 (13) | −0.0246 (13) |
C24 | 0.089 (2) | 0.067 (2) | 0.0587 (19) | 0.0328 (18) | −0.0347 (18) | −0.0315 (16) |
C25 | 0.100 (3) | 0.0545 (18) | 0.0569 (19) | 0.0055 (18) | −0.0405 (19) | −0.0190 (15) |
C26 | 0.081 (2) | 0.076 (2) | 0.0396 (16) | −0.0212 (18) | −0.0102 (16) | −0.0173 (15) |
C27 | 0.0476 (16) | 0.0667 (19) | 0.0508 (16) | −0.0041 (14) | −0.0096 (14) | −0.0275 (14) |
N31 | 0.0364 (11) | 0.0353 (10) | 0.0357 (10) | −0.0006 (8) | −0.0072 (9) | −0.0169 (9) |
N32 | 0.0573 (15) | 0.0457 (13) | 0.0505 (13) | 0.0041 (11) | −0.0010 (11) | −0.0263 (11) |
C31 | 0.0421 (15) | 0.0506 (15) | 0.0452 (14) | −0.0046 (12) | −0.0048 (12) | −0.0230 (12) |
C32 | 0.0621 (19) | 0.0520 (16) | 0.0474 (15) | −0.0075 (14) | −0.0044 (14) | −0.0299 (13) |
C33 | 0.0401 (14) | 0.0364 (13) | 0.0419 (14) | 0.0056 (11) | −0.0030 (12) | −0.0084 (11) |
C34 | 0.0439 (16) | 0.0628 (19) | 0.0628 (19) | 0.0138 (14) | −0.0055 (15) | −0.0205 (15) |
C35 | 0.0355 (16) | 0.084 (2) | 0.065 (2) | 0.0011 (15) | −0.0125 (15) | −0.0107 (17) |
C36 | 0.0482 (17) | 0.078 (2) | 0.0540 (17) | −0.0079 (15) | −0.0188 (15) | −0.0183 (15) |
C37 | 0.0422 (15) | 0.0528 (16) | 0.0447 (14) | −0.0024 (12) | −0.0100 (12) | −0.0189 (12) |
C38 | 0.0356 (13) | 0.0332 (12) | 0.0331 (12) | 0.0000 (10) | −0.0055 (10) | −0.0089 (10) |
Cu1—O12 | 1.9582 (15) | C23—C24 | 1.375 (3) |
Cu1—O11 | 1.9660 (15) | C23—H23 | 0.9300 |
Cu1—O21 | 1.9735 (16) | C24—C25 | 1.367 (4) |
Cu1—O22 | 1.9746 (16) | C24—H24 | 0.9300 |
Cu1—N31 | 2.2465 (18) | C25—C26 | 1.366 (4) |
Cu1—Cu1i | 2.6683 (6) | C25—H25 | 0.9300 |
O11—C11 | 1.258 (3) | C26—C27 | 1.383 (4) |
O12—C11i | 1.263 (2) | C26—H26 | 0.9300 |
C11—O12i | 1.263 (2) | C27—H27 | 0.9300 |
C11—C12 | 1.498 (3) | N31—C31 | 1.313 (3) |
C12—C13 | 1.377 (3) | N31—C38 | 1.370 (3) |
C12—C17 | 1.383 (3) | N32—C32 | 1.302 (3) |
C13—C14 | 1.383 (3) | N32—C33 | 1.366 (3) |
C13—H13 | 0.9300 | C31—C32 | 1.413 (3) |
C14—C15 | 1.370 (4) | C31—H31 | 0.9300 |
C14—H14 | 0.9300 | C32—H32 | 0.9300 |
C15—C16 | 1.371 (3) | C33—C34 | 1.415 (4) |
C15—H15 | 0.9300 | C33—C38 | 1.416 (3) |
C16—C17 | 1.376 (3) | C34—C35 | 1.351 (4) |
C16—H16 | 0.9300 | C34—H34 | 0.9300 |
C17—H17 | 0.9300 | C35—C36 | 1.395 (4) |
O21—C21 | 1.255 (3) | C35—H35 | 0.9300 |
O22—C21i | 1.267 (3) | C36—C37 | 1.369 (3) |
C21—O22i | 1.267 (3) | C36—H36 | 0.9300 |
C21—C22 | 1.500 (3) | C37—C38 | 1.407 (3) |
C22—C23 | 1.381 (3) | C37—H37 | 0.9300 |
C22—C27 | 1.386 (3) | ||
O12—Cu1—O11 | 167.30 (6) | C27—C22—C21 | 120.9 (2) |
O12—Cu1—O21 | 89.25 (7) | C24—C23—C22 | 121.2 (3) |
O11—Cu1—O21 | 88.44 (7) | C24—C23—H23 | 119.4 |
O12—Cu1—O22 | 89.63 (7) | C22—C23—H23 | 119.4 |
O11—Cu1—O22 | 89.93 (7) | C25—C24—C23 | 120.2 (3) |
O21—Cu1—O22 | 167.48 (6) | C25—C24—H24 | 119.9 |
O12—Cu1—N31 | 101.20 (7) | C23—C24—H24 | 119.9 |
O11—Cu1—N31 | 91.45 (6) | C26—C25—C24 | 119.5 (3) |
O21—Cu1—N31 | 95.59 (7) | C26—C25—H25 | 120.3 |
O22—Cu1—N31 | 96.86 (7) | C24—C25—H25 | 120.3 |
O12—Cu1—Cu1i | 85.49 (5) | C25—C26—C27 | 120.9 (3) |
O11—Cu1—Cu1i | 81.87 (5) | C25—C26—H26 | 119.6 |
O21—Cu1—Cu1i | 85.08 (5) | C27—C26—H26 | 119.6 |
O22—Cu1—Cu1i | 82.40 (5) | C26—C27—C22 | 120.0 (3) |
N31—Cu1—Cu1i | 173.27 (5) | C26—C27—H27 | 120.0 |
C11—O11—Cu1 | 125.83 (15) | C22—C27—H27 | 120.0 |
C11i—O12—Cu1 | 121.79 (15) | C31—N31—C38 | 116.26 (19) |
O11—C11—O12i | 125.0 (2) | C31—N31—Cu1 | 115.16 (15) |
O11—C11—C12 | 117.4 (2) | C38—N31—Cu1 | 128.20 (14) |
O12i—C11—C12 | 117.6 (2) | C32—N32—C33 | 115.7 (2) |
C13—C12—C17 | 119.0 (2) | N31—C31—C32 | 122.6 (2) |
C13—C12—C11 | 119.8 (2) | N31—C31—H31 | 118.7 |
C17—C12—C11 | 121.1 (2) | C32—C31—H31 | 118.7 |
C12—C13—C14 | 120.4 (2) | N32—C32—C31 | 123.1 (2) |
C12—C13—H13 | 119.8 | N32—C32—H32 | 118.5 |
C14—C13—H13 | 119.8 | C31—C32—H32 | 118.5 |
C15—C14—C13 | 120.0 (2) | N32—C33—C34 | 119.2 (2) |
C15—C14—H14 | 120.0 | N32—C33—C38 | 122.0 (2) |
C13—C14—H14 | 120.0 | C34—C33—C38 | 118.9 (2) |
C14—C15—C16 | 120.0 (2) | C35—C34—C33 | 120.1 (3) |
C14—C15—H15 | 120.0 | C35—C34—H34 | 119.9 |
C16—C15—H15 | 120.0 | C33—C34—H34 | 119.9 |
C15—C16—C17 | 120.3 (2) | C34—C35—C36 | 121.1 (3) |
C15—C16—H16 | 119.9 | C34—C35—H35 | 119.4 |
C17—C16—H16 | 119.9 | C36—C35—H35 | 119.4 |
C16—C17—C12 | 120.3 (2) | C37—C36—C35 | 120.6 (3) |
C16—C17—H17 | 119.8 | C37—C36—H36 | 119.7 |
C12—C17—H17 | 119.8 | C35—C36—H36 | 119.7 |
C21—O21—Cu1 | 122.18 (16) | C36—C37—C38 | 119.8 (2) |
C21i—O22—Cu1 | 125.03 (15) | C36—C37—H37 | 120.1 |
O21—C21—O22i | 125.1 (2) | C38—C37—H37 | 120.1 |
O21—C21—C22 | 117.6 (2) | N31—C38—C37 | 120.2 (2) |
O22i—C21—C22 | 117.2 (2) | N31—C38—C33 | 120.3 (2) |
C23—C22—C27 | 118.2 (2) | C37—C38—C33 | 119.4 (2) |
C23—C22—C21 | 120.8 (2) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H5O2)4(C8H6N2)2] |
Mr | 871.82 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.1423 (16), 10.3400 (17), 10.5148 (17) |
α, β, γ (°) | 65.459 (2), 73.063 (3), 82.142 (3) |
V (Å3) | 959.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.15 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5377, 3668, 2983 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.080, 0.96 |
No. of reflections | 3668 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.41 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).
Acknowledgements
Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of the Environment is gratefully acknowledged.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press. Google Scholar
Deka, K., Sarma, R. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931–934. Web of Science CSD CrossRef CAS Google Scholar
Goto, M., Furukawa, M., Miyamoto, J., Kanoh, H. & Kaneko, K. (2007). Langmuir, 23, 5264–5266. Web of Science CrossRef PubMed CAS Google Scholar
Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Speier, G. & Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333. CSD CrossRef Web of Science Google Scholar
Takamizawa, S., Nakata, E. & Saito, T. (2004). Inorg. Chem. Commun. 7, 1–3. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dinuclear metal carboxylates, M2(O2CR)4, are important for the study of structures and metal-metal interaction (Cotton & Walton, 1993). Among them copper(II) carboxylates are used as building blocks to form a pillard-grid MOF with large pores (Pichon et al., 2007), and copper(II) benzoate pyrazine is used as the organic-inorganic hybrid complex that adsorbs gas molecules through clathrate formation (Goto et al., 2007, Takamizawa et al., 2004). Due to different coordination modes of carboxylates (Casarin et al., 2005), it is essential to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligands (Deka et al., 2006). Controlling the binding of carboxylate will make it possible to synthesize complexes having new structures. We report here on the structure of new copper(II) benzoate with quinoxaline.
Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 2, -y + 1, -z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around the copper atom is completed by nitrogen atom of quinoxaline molecule (Cu—N 2.2465 (18) Å) and by the second copper atom (Cu···Cu 2.668 (5) Å). The copper atom is 0.216 Å out of the plane of the four oxygen atoms.