metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-bis­­[(quinoxaline)copper(II)]

aDepartment of Fine Chemistry, Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, and bDivision of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 6 December 2007; accepted 20 December 2007; online 4 January 2008)

The paddlewheel-type centrosymmetric dinuclear title complex, [Cu2(C7H5O2)4(C8H6N2)2], contains four bridging benzoate groups and two terminal quinoxaline ligands. The octa­hedral coordination around each Cu atom, with four O atoms in the equatorial plane, is completed by an N atom of a quinoxaline mol­ecule [Cu—N = 2.2465 (18) Å] and by the second Cu atom [Cu⋯Cu = 2.668 (5) Å]. The Cu atom is 0.216 Å out of the plane of the four O atoms.

Related literature

For the related structure, Cu2(O2CPh)4(py)2 (py = pyridine), see: Speier & Fülöp (1989[Speier, G. & Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]). For background information, see: Cotton & Walton (1993[Cotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.]); Pichon et al. (2007[Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449-451.]); Goto et al. (2007[Goto, M., Furukawa, M., Miyamoto, J., Kanoh, H. & Kaneko, K. (2007). Langmuir, 23, 5264-5266.]); Takamizawa et al. (2004[Takamizawa, S., Nakata, E. & Saito, T. (2004). Inorg. Chem. Commun. 7, 1-3.]); Casarin et al. (2005[Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]); Deka et al. (2006[Deka, K., Sarma, R. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931-934.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H5O2)4(C8H6N2)2]

  • Mr = 871.82

  • Triclinic, [P \overline 1]

  • a = 10.1423 (16) Å

  • b = 10.3400 (17) Å

  • c = 10.5148 (17) Å

  • α = 65.459 (2)°

  • β = 73.063 (3)°

  • γ = 82.142 (3)°

  • V = 959.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 (2) K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 5377 measured reflections

  • 3668 independent reflections

  • 2983 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 0.96

  • 3668 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dinuclear metal carboxylates, M2(O2CR)4, are important for the study of structures and metal-metal interaction (Cotton & Walton, 1993). Among them copper(II) carboxylates are used as building blocks to form a pillard-grid MOF with large pores (Pichon et al., 2007), and copper(II) benzoate pyrazine is used as the organic-inorganic hybrid complex that adsorbs gas molecules through clathrate formation (Goto et al., 2007, Takamizawa et al., 2004). Due to different coordination modes of carboxylates (Casarin et al., 2005), it is essential to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligands (Deka et al., 2006). Controlling the binding of carboxylate will make it possible to synthesize complexes having new structures. We report here on the structure of new copper(II) benzoate with quinoxaline.

Asymmetric unit contains half of whole molecule, and there is an inversion center in the middle of Cu—Cu bond. Symmetric operation (-x + 2, -y + 1, -z + 1) produces a paddle-wheel type dinuclear copper-benzoate complex (Fig. 1). The paddle-wheel type dinuclear complex is constructed by four bridging benzoate groups and two terminal quinoxaline ligands. The octahedral coordination around the copper atom is completed by nitrogen atom of quinoxaline molecule (Cu—N 2.2465 (18) Å) and by the second copper atom (Cu···Cu 2.668 (5) Å). The copper atom is 0.216 Å out of the plane of the four oxygen atoms.

Related literature top

For the related structure, Cu2(O2CPh)4(py)2, see: Speier & Fülöp (1989) [please define Ph and py]. For background information, see: Cotton & Walton (1993); Pichon et al. (2007); Goto et al. (2007); Takamizawa et al. (2004); Casarin et al. (2005); Deka et al. (2006).

Experimental top

19.0 mg (0.1 mmol) of Cu(NO3)2.2.5H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml me thanol and carefully layered by 4 ml acetone solution of quinoxaline ligand (26.0 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level.
Tetra-µ-benzoato-bis[(quinoxaline)copper(II)] top
Crystal data top
[Cu2(C7H5O2)4(C8H6N2)2]Z = 1
Mr = 871.82F(000) = 446
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1423 (16) ÅCell parameters from 2414 reflections
b = 10.3400 (17) Åθ = 2.4–27.2°
c = 10.5148 (17) ŵ = 1.17 mm1
α = 65.459 (2)°T = 293 K
β = 73.063 (3)°Block, blue
γ = 82.142 (3)°0.15 × 0.10 × 0.08 mm
V = 959.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ϕ and ω scansh = 612
5377 measured reflectionsk = 1212
3668 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max = 0.002
262 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu2(C7H5O2)4(C8H6N2)2]γ = 82.142 (3)°
Mr = 871.82V = 959.4 (3) Å3
Triclinic, P1Z = 1
a = 10.1423 (16) ÅMo Kα radiation
b = 10.3400 (17) ŵ = 1.17 mm1
c = 10.5148 (17) ÅT = 293 K
α = 65.459 (2)°0.15 × 0.10 × 0.08 mm
β = 73.063 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 reflections with I > 2σ(I)
5377 measured reflectionsRint = 0.031
3668 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.96Δρmax = 0.28 e Å3
3668 reflectionsΔρmin = 0.41 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.11111 (3)0.47628 (3)0.40624 (3)0.03419 (11)
O110.99508 (16)0.32526 (17)0.43180 (19)0.0499 (5)
O121.18983 (16)0.63828 (16)0.40754 (17)0.0440 (4)
C110.8752 (2)0.2967 (2)0.5137 (2)0.0369 (5)
C120.8048 (2)0.1757 (2)0.5189 (2)0.0351 (5)
C130.8728 (3)0.0988 (3)0.4383 (3)0.0492 (6)
H130.96180.12300.38000.059*
C140.8095 (3)0.0143 (3)0.4433 (3)0.0568 (7)
H140.85640.06660.38970.068*
C150.6776 (3)0.0490 (3)0.5274 (3)0.0498 (7)
H150.63490.12470.53060.060*
C160.6087 (3)0.0279 (3)0.6069 (3)0.0470 (6)
H160.51910.00440.66370.056*
C170.6716 (2)0.1398 (2)0.6030 (2)0.0408 (6)
H170.62430.19160.65720.049*
O211.02164 (17)0.60977 (18)0.25640 (18)0.0495 (4)
O221.16461 (17)0.35143 (16)0.58557 (17)0.0452 (4)
C210.9089 (2)0.6714 (2)0.2873 (2)0.0370 (5)
C220.8591 (2)0.7841 (2)0.1645 (2)0.0382 (5)
C230.7344 (3)0.8541 (3)0.1901 (3)0.0535 (7)
H230.67710.82490.28370.064*
C240.6936 (3)0.9660 (3)0.0797 (3)0.0694 (9)
H240.60961.01230.09930.083*
C250.7761 (4)1.0094 (3)0.0586 (3)0.0678 (9)
H250.74971.08660.13290.081*
C260.8975 (3)0.9385 (3)0.0869 (3)0.0666 (8)
H260.95230.96600.18150.080*
C270.9401 (3)0.8263 (3)0.0233 (3)0.0540 (7)
H271.02320.77910.00260.065*
N311.28562 (19)0.41356 (19)0.25284 (19)0.0354 (4)
N321.4763 (2)0.2919 (2)0.0746 (2)0.0522 (6)
C311.2485 (3)0.3591 (3)0.1760 (3)0.0457 (6)
H311.15540.36010.18040.055*
C321.3443 (3)0.2991 (3)0.0868 (3)0.0519 (7)
H321.31150.26310.03440.062*
C331.5184 (2)0.3494 (2)0.1517 (3)0.0443 (6)
C341.6606 (3)0.3475 (3)0.1428 (3)0.0615 (8)
H341.72370.30590.08620.074*
C351.7047 (3)0.4059 (3)0.2163 (3)0.0684 (9)
H351.79840.40480.20890.082*
C361.6121 (3)0.4678 (3)0.3030 (3)0.0608 (8)
H361.64480.50780.35230.073*
C371.4736 (3)0.4702 (3)0.3163 (3)0.0468 (6)
H371.41240.51060.37530.056*
C381.4240 (2)0.4112 (2)0.2406 (2)0.0363 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03083 (17)0.03639 (17)0.04054 (18)0.00078 (11)0.00605 (12)0.02234 (13)
O110.0379 (10)0.0541 (11)0.0676 (12)0.0115 (8)0.0016 (9)0.0407 (9)
O120.0422 (10)0.0443 (10)0.0528 (10)0.0082 (8)0.0025 (8)0.0307 (8)
C110.0375 (14)0.0357 (13)0.0414 (13)0.0001 (11)0.0138 (12)0.0168 (11)
C120.0380 (13)0.0327 (12)0.0396 (13)0.0006 (10)0.0150 (11)0.0159 (10)
C130.0387 (14)0.0505 (15)0.0651 (17)0.0080 (12)0.0026 (13)0.0344 (14)
C140.0577 (18)0.0534 (17)0.0745 (19)0.0017 (14)0.0120 (15)0.0430 (15)
C150.0589 (18)0.0380 (14)0.0593 (16)0.0103 (12)0.0237 (14)0.0174 (12)
C160.0423 (15)0.0473 (15)0.0485 (15)0.0119 (12)0.0099 (12)0.0141 (12)
C170.0433 (14)0.0411 (14)0.0403 (13)0.0041 (11)0.0112 (11)0.0172 (11)
O210.0420 (10)0.0636 (11)0.0481 (10)0.0139 (9)0.0157 (8)0.0291 (9)
O220.0435 (10)0.0467 (10)0.0421 (10)0.0063 (8)0.0103 (8)0.0171 (8)
C210.0380 (14)0.0378 (13)0.0463 (14)0.0037 (11)0.0137 (12)0.0246 (11)
C220.0433 (14)0.0392 (13)0.0408 (13)0.0027 (11)0.0134 (11)0.0220 (11)
C230.0600 (18)0.0604 (17)0.0413 (14)0.0139 (14)0.0151 (13)0.0246 (13)
C240.089 (2)0.067 (2)0.0587 (19)0.0328 (18)0.0347 (18)0.0315 (16)
C250.100 (3)0.0545 (18)0.0569 (19)0.0055 (18)0.0405 (19)0.0190 (15)
C260.081 (2)0.076 (2)0.0396 (16)0.0212 (18)0.0102 (16)0.0173 (15)
C270.0476 (16)0.0667 (19)0.0508 (16)0.0041 (14)0.0096 (14)0.0275 (14)
N310.0364 (11)0.0353 (10)0.0357 (10)0.0006 (8)0.0072 (9)0.0169 (9)
N320.0573 (15)0.0457 (13)0.0505 (13)0.0041 (11)0.0010 (11)0.0263 (11)
C310.0421 (15)0.0506 (15)0.0452 (14)0.0046 (12)0.0048 (12)0.0230 (12)
C320.0621 (19)0.0520 (16)0.0474 (15)0.0075 (14)0.0044 (14)0.0299 (13)
C330.0401 (14)0.0364 (13)0.0419 (14)0.0056 (11)0.0030 (12)0.0084 (11)
C340.0439 (16)0.0628 (19)0.0628 (19)0.0138 (14)0.0055 (15)0.0205 (15)
C350.0355 (16)0.084 (2)0.065 (2)0.0011 (15)0.0125 (15)0.0107 (17)
C360.0482 (17)0.078 (2)0.0540 (17)0.0079 (15)0.0188 (15)0.0183 (15)
C370.0422 (15)0.0528 (16)0.0447 (14)0.0024 (12)0.0100 (12)0.0189 (12)
C380.0356 (13)0.0332 (12)0.0331 (12)0.0000 (10)0.0055 (10)0.0089 (10)
Geometric parameters (Å, º) top
Cu1—O121.9582 (15)C23—C241.375 (3)
Cu1—O111.9660 (15)C23—H230.9300
Cu1—O211.9735 (16)C24—C251.367 (4)
Cu1—O221.9746 (16)C24—H240.9300
Cu1—N312.2465 (18)C25—C261.366 (4)
Cu1—Cu1i2.6683 (6)C25—H250.9300
O11—C111.258 (3)C26—C271.383 (4)
O12—C11i1.263 (2)C26—H260.9300
C11—O12i1.263 (2)C27—H270.9300
C11—C121.498 (3)N31—C311.313 (3)
C12—C131.377 (3)N31—C381.370 (3)
C12—C171.383 (3)N32—C321.302 (3)
C13—C141.383 (3)N32—C331.366 (3)
C13—H130.9300C31—C321.413 (3)
C14—C151.370 (4)C31—H310.9300
C14—H140.9300C32—H320.9300
C15—C161.371 (3)C33—C341.415 (4)
C15—H150.9300C33—C381.416 (3)
C16—C171.376 (3)C34—C351.351 (4)
C16—H160.9300C34—H340.9300
C17—H170.9300C35—C361.395 (4)
O21—C211.255 (3)C35—H350.9300
O22—C21i1.267 (3)C36—C371.369 (3)
C21—O22i1.267 (3)C36—H360.9300
C21—C221.500 (3)C37—C381.407 (3)
C22—C231.381 (3)C37—H370.9300
C22—C271.386 (3)
O12—Cu1—O11167.30 (6)C27—C22—C21120.9 (2)
O12—Cu1—O2189.25 (7)C24—C23—C22121.2 (3)
O11—Cu1—O2188.44 (7)C24—C23—H23119.4
O12—Cu1—O2289.63 (7)C22—C23—H23119.4
O11—Cu1—O2289.93 (7)C25—C24—C23120.2 (3)
O21—Cu1—O22167.48 (6)C25—C24—H24119.9
O12—Cu1—N31101.20 (7)C23—C24—H24119.9
O11—Cu1—N3191.45 (6)C26—C25—C24119.5 (3)
O21—Cu1—N3195.59 (7)C26—C25—H25120.3
O22—Cu1—N3196.86 (7)C24—C25—H25120.3
O12—Cu1—Cu1i85.49 (5)C25—C26—C27120.9 (3)
O11—Cu1—Cu1i81.87 (5)C25—C26—H26119.6
O21—Cu1—Cu1i85.08 (5)C27—C26—H26119.6
O22—Cu1—Cu1i82.40 (5)C26—C27—C22120.0 (3)
N31—Cu1—Cu1i173.27 (5)C26—C27—H27120.0
C11—O11—Cu1125.83 (15)C22—C27—H27120.0
C11i—O12—Cu1121.79 (15)C31—N31—C38116.26 (19)
O11—C11—O12i125.0 (2)C31—N31—Cu1115.16 (15)
O11—C11—C12117.4 (2)C38—N31—Cu1128.20 (14)
O12i—C11—C12117.6 (2)C32—N32—C33115.7 (2)
C13—C12—C17119.0 (2)N31—C31—C32122.6 (2)
C13—C12—C11119.8 (2)N31—C31—H31118.7
C17—C12—C11121.1 (2)C32—C31—H31118.7
C12—C13—C14120.4 (2)N32—C32—C31123.1 (2)
C12—C13—H13119.8N32—C32—H32118.5
C14—C13—H13119.8C31—C32—H32118.5
C15—C14—C13120.0 (2)N32—C33—C34119.2 (2)
C15—C14—H14120.0N32—C33—C38122.0 (2)
C13—C14—H14120.0C34—C33—C38118.9 (2)
C14—C15—C16120.0 (2)C35—C34—C33120.1 (3)
C14—C15—H15120.0C35—C34—H34119.9
C16—C15—H15120.0C33—C34—H34119.9
C15—C16—C17120.3 (2)C34—C35—C36121.1 (3)
C15—C16—H16119.9C34—C35—H35119.4
C17—C16—H16119.9C36—C35—H35119.4
C16—C17—C12120.3 (2)C37—C36—C35120.6 (3)
C16—C17—H17119.8C37—C36—H36119.7
C12—C17—H17119.8C35—C36—H36119.7
C21—O21—Cu1122.18 (16)C36—C37—C38119.8 (2)
C21i—O22—Cu1125.03 (15)C36—C37—H37120.1
O21—C21—O22i125.1 (2)C38—C37—H37120.1
O21—C21—C22117.6 (2)N31—C38—C37120.2 (2)
O22i—C21—C22117.2 (2)N31—C38—C33120.3 (2)
C23—C22—C27118.2 (2)C37—C38—C33119.4 (2)
C23—C22—C21120.8 (2)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H5O2)4(C8H6N2)2]
Mr871.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1423 (16), 10.3400 (17), 10.5148 (17)
α, β, γ (°)65.459 (2), 73.063 (3), 82.142 (3)
V3)959.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5377, 3668, 2983
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 0.96
No. of reflections3668
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

 

Acknowledgements

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of the Environment is gratefully acknowledged.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCotton, F. A. & Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.  Google Scholar
First citationDeka, K., Sarma, R. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931–934.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoto, M., Furukawa, M., Miyamoto, J., Kanoh, H. & Kaneko, K. (2007). Langmuir, 23, 5264–5266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPichon, A., Fierro, C. M., Nieuwenhuyzen, M. & James, L. (2007). CrystEngComm, 9, 449–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpeier, G. & Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationTakamizawa, S., Nakata, E. & Saito, T. (2004). Inorg. Chem. Commun. 7, 1–3.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds