organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­phenyl­sulfur penta­fluoride

aDepartment of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia
*Correspondence e-mail: evgeny.goreshnik@ijs.si

(Received 14 December 2007; accepted 3 January 2008; online 9 January 2008)

In the title compound, C6H6F5NS, the environment of the S atom is roughly octa­hedral. The axial F—S bond appears slightly elongated with respect to the four equatorial F—S bonds. Equatorial F atoms are staggered with respect to the benzene ring. The N atom is displaced from the benzene plane by 0.154 (4) Å. The F—S—C—C torsion angles differ greatly from the values observed in the related structure of 4-acetamido­phenyl­sulfur penta­fluoride. The packing is stabil­ized by weak N—H⋯F contacts.

Related literature

For related literature, see: Raasch (1963[Raasch, M. S. (1963). US Patent 3 073 861.]); Bowden et al. (2000[Bowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. & Philip, D. (2000). Tetrahedron, 56, 3399-3408.]); Sheppard (1960[Sheppard, W. A. (1960). J. Am. Chem. Soc. 82, 4751-4752.], 1962[Sheppard, W. A. (1962). J. Am. Chem. Soc. 84, 3064-3072.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6F5NS

  • Mr = 219.18

  • Orthorhombic, P b c a

  • a = 16.0369 (13) Å

  • b = 5.7514 (5) Å

  • c = 17.5305 (15) Å

  • V = 1616.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 200 K

  • 0.1 × 0.08 × 0.05 mm

Data collection
  • Rigaku Mercury CCDdiffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.959, Tmax = 0.981

  • 6533 measured reflections

  • 1650 independent reflections

  • 633 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.065

  • S = 0.58

  • 1650 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯F5i 0.89 2.59 3.38 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Phenylsulfur pentafluorides were first synthesized (Sheppard, 1960) by the fluorination of aromatic disulfides with silver difluoride. Some SF5-benzene derivatives were patented as plant regulants, herbicides and bactericides (Raasch, 1963).

In the title compound, the environment of sulfur atom appears to be approximately octahedral (Fig. 1) with the C – S bond being 1.786 (3) Å, four equatorial S - F bonds of 1.577 (2) – 1.586 (2) Å and noticeably elongated to 1.600 (2) Å axial S – F bond. Equatorial F atoms are declined slightly away from the benzene ring resulting in the medium value of Feq – S – Fax angle of 86.9 °. Similar staggered conformation was observed earlier in the structure of 4-acetamidophenylsulfur pentafluoride (Bowden et al., 2000). The F – S – C – C dihedral angles values of 43 and 47 ° differ from observed in above mentioned structure of 4-acetamidophenylsulfur pentafluoride 30 and 60 ° respectively. The packing is stabilized by weak N—H···F contacts.

Related literature top

For related literature, see: Raasch (1963); Bowden et al. (2000); Sheppard (1960, 1962).

Experimental top

Sample of 4-aminohenylsulfur pentafluoride was prepared in three steps according to original procedure (Sheppard, 1962). Bis-(4-nitrophenyl)-disulfide was fluorinated with silver difluoride in CFC113 solvent and the product 4-nitrophenylsulfur-pentafluoride was obtained in 10.0% yield and was consequently purified by preparative HPLC. 95% pure 4-nitrophenylsulfur pentafluoride was hydrogenated with hydrogen gas in acidic (HCL) ethanol solution, PtO2 was used as a catalyst. The 4-aminophenylsulfur pentafluoride hydrochloride obtained was reacted with sodium bicarbonate water solution and the product 4-aminophenylsulfur pentafluoride was extracted with diethyl ether and recrystallized from pentane. 4-Aminophenylsulfur pentafluoride crystallizes as white needles.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atoms of amino group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.89 (1)Å and H···H= 1.57 (2) Å) with Uiso(H) = 1.2Ueq(N). In the last stage of refinement, they were treated as riding on their parent N atom.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalClear (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular view of I with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphers of arbitrary radii.
4-Aminophenylsulfur pentafluoride top
Crystal data top
C6H6F5NSF(000) = 880
Mr = 219.18Dx = 1.801 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 71 reflections
a = 16.0369 (13) Åθ = 1.2–29.1°
b = 5.7514 (5) ŵ = 0.44 mm1
c = 17.5305 (15) ÅT = 200 K
V = 1616.9 (2) Å3Chunk, colourless
Z = 80.1 × 0.08 × 0.05 mm
Data collection top
Mercury CCD (2x2 bin mode)
diffractometer
633 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.051
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 26.4°, θmin = 2.3°
Tmin = 0.959, Tmax = 0.981h = 020
6533 measured reflectionsk = 07
1650 independent reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.58 w = 1/[σ2(Fo2)]
1650 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H6F5NSV = 1616.9 (2) Å3
Mr = 219.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.0369 (13) ŵ = 0.44 mm1
b = 5.7514 (5) ÅT = 200 K
c = 17.5305 (15) Å0.1 × 0.08 × 0.05 mm
Data collection top
Mercury CCD (2x2 bin mode)
diffractometer
1650 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
633 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.981Rint = 0.051
6533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.58Δρmax = 0.26 e Å3
1650 reflectionsΔρmin = 0.22 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89753 (5)0.08028 (15)0.09772 (6)0.0401 (2)
F10.87251 (10)0.3449 (3)0.10747 (12)0.0606 (6)
F20.80397 (8)0.0204 (3)0.07597 (11)0.0597 (6)
F30.92307 (9)0.1787 (3)0.07811 (11)0.0529 (6)
F40.99217 (9)0.1448 (3)0.10997 (12)0.0566 (6)
F50.91119 (10)0.1370 (3)0.00922 (11)0.0608 (6)
C10.84866 (18)0.0742 (6)0.3495 (2)0.0417 (9)
C20.89380 (16)0.1215 (6)0.3276 (2)0.0424 (9)
H20.91360.22280.36480.051*
C30.90968 (17)0.1681 (5)0.2514 (2)0.0391 (9)
H30.93940.30050.23770.047*
C40.88150 (16)0.0181 (5)0.19639 (18)0.0303 (8)
C50.83895 (16)0.1814 (5)0.2167 (2)0.0364 (8)
H50.82050.28420.17940.044*
C60.82413 (17)0.2267 (5)0.2925 (2)0.0415 (9)
H60.79690.36350.30590.050*
N10.82569 (15)0.1078 (5)0.42463 (17)0.0618 (9)
H110.80810.25120.43200.074*
H120.85220.02890.46030.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0450 (5)0.0386 (5)0.0367 (6)0.0025 (4)0.0026 (5)0.0008 (5)
F10.0980 (14)0.0353 (11)0.0486 (15)0.0151 (10)0.0129 (12)0.0070 (11)
F20.0412 (10)0.0926 (15)0.0453 (15)0.0039 (9)0.0090 (10)0.0005 (12)
F30.0731 (12)0.0369 (11)0.0487 (15)0.0077 (9)0.0085 (11)0.0127 (10)
F40.0432 (10)0.0714 (13)0.0552 (16)0.0147 (9)0.0108 (10)0.0010 (12)
F50.0819 (13)0.0706 (14)0.0300 (13)0.0071 (10)0.0147 (11)0.0067 (11)
C10.040 (2)0.053 (2)0.032 (2)0.0120 (17)0.0036 (18)0.009 (2)
C20.0417 (19)0.047 (2)0.038 (2)0.0027 (17)0.0073 (18)0.0070 (19)
C30.0419 (19)0.037 (2)0.038 (2)0.0076 (15)0.0024 (18)0.0009 (19)
C40.0336 (17)0.0276 (18)0.030 (2)0.0041 (14)0.0002 (15)0.0005 (16)
C50.0362 (18)0.0312 (19)0.042 (2)0.0041 (15)0.0018 (17)0.0071 (19)
C60.0424 (19)0.033 (2)0.049 (3)0.0003 (16)0.0081 (19)0.004 (2)
N10.0770 (19)0.068 (2)0.040 (2)0.0009 (16)0.0052 (17)0.0081 (19)
Geometric parameters (Å, º) top
S1—F41.5771 (16)C2—H20.9300
S1—F31.5826 (17)C3—C41.370 (4)
S1—F11.5832 (17)C3—H30.9300
S1—F21.5860 (16)C4—C51.382 (4)
S1—F51.600 (2)C5—C61.375 (4)
S1—C41.785 (3)C5—H50.9300
C1—N11.381 (4)C6—H60.9300
C1—C61.386 (4)N1—H110.8813
C1—C21.392 (4)N1—H120.8823
C2—C31.386 (4)
F4—S1—F390.11 (9)C3—C2—C1121.2 (3)
F4—S1—F190.18 (10)C3—C2—H2119.4
F3—S1—F1173.62 (13)C1—C2—H2119.4
F4—S1—F2173.86 (13)C4—C3—C2119.7 (3)
F3—S1—F289.33 (10)C4—C3—H3120.1
F1—S1—F289.70 (10)C2—C3—H3120.1
F4—S1—F587.26 (10)C3—C4—C5120.2 (3)
F3—S1—F586.90 (11)C3—C4—S1120.6 (2)
F1—S1—F586.75 (11)C5—C4—S1119.2 (3)
F2—S1—F586.60 (11)C6—C5—C4119.5 (3)
F4—S1—C493.09 (12)C6—C5—H5120.2
F3—S1—C493.40 (12)C4—C5—H5120.2
F1—S1—C492.95 (13)C5—C6—C1121.8 (3)
F2—S1—C493.05 (12)C5—C6—H6119.1
F5—S1—C4179.54 (13)C1—C6—H6119.1
N1—C1—C6121.5 (3)C1—N1—H11110.9
N1—C1—C2121.0 (4)C1—N1—H12118.5
C6—C1—C2117.4 (3)H11—N1—H12122.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···F5i0.892.593.38148
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6F5NS
Mr219.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)16.0369 (13), 5.7514 (5), 17.5305 (15)
V3)1616.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.1 × 0.08 × 0.05
Data collection
DiffractometerMercury CCD (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.959, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6533, 1650, 633
Rint0.051
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 0.58
No. of reflections1650
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CrystalClear (Rigaku, 1999), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···F5i0.892.593.38148
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Ministry of Science and Education of Slovenia and the European Scientific Foundation (COST 527 project).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. & Philip, D. (2000). Tetrahedron, 56, 3399–3408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRaasch, M. S. (1963). US Patent 3 073 861.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, W. A. (1960). J. Am. Chem. Soc. 82, 4751–4752.  Web of Science CrossRef CAS Google Scholar
First citationSheppard, W. A. (1962). J. Am. Chem. Soc. 84, 3064–3072.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds