organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3,4-Tetra­hydro­iso­quinoline-2-sulfonamide

aLaboratoire de Chimie Organique Appliquée, LCOA, Groupe de Chimie Bioorganique, Faculté des Sciences, Département de Chimie, Université d'Annaba, Algeria, and bLaboratoire de Biophysique Moléculaire Cellulaire et Tissulaire (UMR 7033 CNRS), UFR-SMBH Université Paris-Nord, 74 rue M. Cachin, 93017 Bobigny Cedex, France
*Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr

(Received 18 December 2007; accepted 21 December 2007; online 11 January 2008)

The title compound, C9H12N2O2S, is a useful precursor of a variety of modified sulfonamide mol­ecules. Due to the importance of these mol­ecules in biological systems (antibacterials, antidepressants and many other applications), there is a growing inter­est in the discovery of new biologically active compounds. In the title compound, the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

Related literature

For related literature, see: Berredjem et al. (2000[Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Martinez et al. (2000[Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267-3273.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]); Esteve & Bidal (2002[Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019-1021.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2S

  • Mr = 212.27

  • Monoclinic, P 21

  • a = 5.275 (1) Å

  • b = 9.541 (1) Å

  • c = 10.229 (1) Å

  • β = 101.80 (5)°

  • V = 503.93 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8285 measured reflections

  • 2210 independent reflections

  • 2106 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.13

  • 2210 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 979 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.91 2.03 2.928 (2) 173
N2—H22⋯O2ii 0.92 2.10 2.971 (2) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and CrystalBuilder (DECOMET Laboratory, 2007[DECOMET Laboratory (2007). CrystalBuilder. DECOMET Laboratory, Louis Pasteur University, Strasbourg, France.]).

Supporting information


Comment top

The sulfamide unit is an ubiquitous structural entity in many naturally occurring compounds and medicinal agents (i.e. anticonvulsant, antihypertensive, hypoglycemic agents, histamine H2-receptor antagonist, herbicide, human cytomegalovirus inibitors···) (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee et al., 2002) We report herein the synthesis and the crystal structure determination of the title compound (Fig. 1).

The crystal structure consists of layers of hydrophobic regions that enclose the bicyclic moiety and polar regions where the sulfamide atoms are involved in hydrogen bond network. Namely, the sulfamide group is involved in four hydrogen bonds (2 with sulfamide O atoms, 2 with nitrogen atom) with four different symmetry-related molecules, building a two dimensional network parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

For related literature, see: Berredjem et al. (2000); Lee & Lee (2002); Martinez et al. (2000); Xiao & Timberlake (2000); Esteve & Bidal(2002); Soledade et al. (2006).

Experimental top

A solution of dimethyl malate (2,27 g, 14.1 mmol) in anhydrous CH2Cl2 (10 ml) was added to a stirring solution of chlorosulfonyl isocyanate (1.23 ml, 14.1 mmol) in CH2Cl2 (10 ml) at 0°C dropwise over period of 10 min. The resulting solution was transferred to a mixture of 1, 2, 3, 4 tetrahydroquinoleine (1,87 g, 14,1 mmol) in CH2Cl2 (20 ml) in the presence of triethylamine (1.1 equiv.). The solution was stirred at 0°C for less than 1.5 h. The reaction mixture was washed with HCl 0.1 N and water, and the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Two compounds were obtained after purification by silica gel chromatography (Fig. 3). Slow evaporation at room temperature of a concentrated dichloromethane / methanol (9/1) solution of the most polar product (sulfamide I) afforded yellow crystals suitable for diffraction.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of amino group were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.90 (1)Å and H···H= 1.66 (2) Å) with Uiso(H) = 1.2Ueq(N). In the last stage of refinement, they were treated as riding on their parent N atom.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and CrystalBuilder (DECOMET Laboratory, 2007).

Figures top
[Figure 1] Fig. 1. Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of the two dimensional network. H bonds are represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, y + 1/2, -z + 1]
[Figure 3] Fig. 3. Chemical pathway of the formation of (I)
1,2,3,4-Tetrahydroisoquinoline-2-sulfonamide top
Crystal data top
C9H12N2O2SF(000) = 224
Mr = 212.27Dx = 1.399 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 6025 reflections
a = 5.275 (1) Åθ = 2.0–27.5°
b = 9.541 (1) ŵ = 0.30 mm1
c = 10.229 (1) ÅT = 293 K
β = 101.80 (5)°Parallelepipedic, yellow
V = 503.93 (15) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2106 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
Detector resolution: 9 pixels mm-1h = 66
ϕ and ω scansk = 1211
8285 measured reflectionsl = 1313
2210 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0148P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2210 reflectionsΔρmax = 0.25 e Å3
127 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 979 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C9H12N2O2SV = 503.93 (15) Å3
Mr = 212.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.275 (1) ŵ = 0.30 mm1
b = 9.541 (1) ÅT = 293 K
c = 10.229 (1) Å0.10 × 0.10 × 0.10 mm
β = 101.80 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2106 reflections with I > 2σ(I)
8285 measured reflectionsRint = 0.032
2210 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.25 e Å3
S = 1.13Δρmin = 0.30 e Å3
2210 reflectionsAbsolute structure: Flack (1983), 979 Friedel pairs
127 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56649 (7)0.52966 (4)0.42439 (3)0.03710 (13)
N10.4887 (3)0.60389 (14)0.27757 (14)0.0369 (3)
C30.5408 (4)0.7557 (2)0.2719 (2)0.0475 (5)
H3A0.69930.77920.33450.057*
H3B0.39980.80870.29560.057*
O20.8298 (3)0.5665 (2)0.47635 (14)0.0624 (5)
C60.1947 (4)0.6250 (2)0.06005 (17)0.0415 (4)
C70.2282 (4)0.5698 (2)0.20079 (17)0.0451 (4)
H7A0.09850.61120.24390.054*
H7B0.20380.46900.19870.054*
C80.3113 (5)0.7727 (3)0.1068 (2)0.0608 (6)
H80.41950.84060.13110.073*
C90.3522 (4)0.7280 (2)0.02630 (18)0.0442 (4)
C100.1146 (5)0.7182 (3)0.2021 (2)0.0631 (6)
H100.08880.74990.28980.076*
C110.0028 (5)0.5703 (3)0.0374 (2)0.0611 (6)
H110.10980.50090.01460.073*
C120.0432 (5)0.6172 (3)0.1677 (2)0.0669 (7)
H120.17730.58020.23170.080*
C130.5667 (4)0.7918 (2)0.1305 (2)0.0538 (5)
H13A0.56360.89290.12000.065*
H13B0.73250.75820.11620.065*
O10.4929 (3)0.38595 (15)0.40334 (14)0.0580 (4)
N20.4032 (3)0.59065 (17)0.52808 (16)0.0426 (3)
H210.44780.67960.55400.051*
H220.23550.55960.51090.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0370 (2)0.0412 (2)0.03170 (18)0.00882 (17)0.00373 (13)0.00083 (17)
N10.0378 (8)0.0365 (8)0.0340 (6)0.0022 (6)0.0012 (5)0.0019 (6)
C30.0564 (12)0.0391 (10)0.0451 (10)0.0060 (8)0.0055 (9)0.0004 (8)
O20.0313 (7)0.1054 (14)0.0475 (7)0.0094 (7)0.0011 (5)0.0075 (8)
C60.0424 (10)0.0444 (9)0.0356 (8)0.0066 (8)0.0029 (7)0.0031 (7)
C70.0430 (9)0.0500 (11)0.0385 (8)0.0071 (8)0.0008 (7)0.0080 (7)
C80.0667 (15)0.0737 (15)0.0458 (11)0.0099 (12)0.0204 (11)0.0167 (11)
C90.0457 (9)0.0485 (10)0.0399 (8)0.0096 (8)0.0122 (8)0.0069 (8)
C100.0767 (15)0.0790 (15)0.0340 (9)0.0256 (13)0.0121 (10)0.0077 (10)
C110.0631 (13)0.0690 (14)0.0434 (10)0.0081 (11)0.0069 (9)0.0031 (9)
C120.0745 (15)0.0789 (17)0.0395 (10)0.0129 (13)0.0066 (10)0.0040 (10)
C130.0525 (12)0.0564 (13)0.0514 (11)0.0089 (10)0.0080 (9)0.0130 (10)
O10.0933 (12)0.0335 (7)0.0448 (7)0.0131 (7)0.0087 (7)0.0030 (6)
N20.0424 (8)0.0439 (8)0.0431 (8)0.0024 (6)0.0122 (6)0.0091 (7)
Geometric parameters (Å, º) top
S1—O21.4261 (16)C8—C101.373 (4)
S1—O11.4293 (16)C8—C91.401 (3)
S1—N21.6060 (16)C8—H80.9300
S1—N11.6350 (14)C9—C131.515 (3)
N1—C71.473 (2)C10—C121.366 (4)
N1—C31.478 (2)C10—H100.9300
C3—C131.520 (3)C11—C121.380 (3)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—H120.9300
C6—C91.376 (3)C13—H13A0.9700
C6—C111.388 (3)C13—H13B0.9700
C6—C71.509 (2)N2—H210.9059
C7—H7A0.9700N2—H220.9154
C7—H7B0.9700
O2—S1—O1120.43 (11)C10—C8—C9121.3 (2)
O2—S1—N2106.12 (10)C10—C8—H8119.4
O1—S1—N2106.34 (10)C9—C8—H8119.4
O2—S1—N1106.13 (10)C6—C9—C8118.7 (2)
O1—S1—N1105.53 (8)C6—C9—C13120.86 (17)
N2—S1—N1112.45 (9)C8—C9—C13120.4 (2)
C7—N1—C3110.85 (15)C12—C10—C8119.7 (2)
C7—N1—S1115.19 (12)C12—C10—H10120.1
C3—N1—S1116.54 (12)C8—C10—H10120.1
N1—C3—C13108.23 (16)C12—C11—C6121.1 (2)
N1—C3—H3A110.1C12—C11—H11119.5
C13—C3—H3A110.1C6—C11—H11119.5
N1—C3—H3B110.1C10—C12—C11119.7 (2)
C13—C3—H3B110.1C10—C12—H12120.1
H3A—C3—H3B108.4C11—C12—H12120.1
C9—C6—C11119.43 (18)C9—C13—C3112.27 (17)
C9—C6—C7122.01 (17)C9—C13—H13A109.1
C11—C6—C7118.57 (18)C3—C13—H13A109.1
N1—C7—C6110.24 (15)C9—C13—H13B109.1
N1—C7—H7A109.6C3—C13—H13B109.1
C6—C7—H7A109.6H13A—C13—H13B107.9
N1—C7—H7B109.6S1—N2—H21113.0
C6—C7—H7B109.6S1—N2—H22112.6
H7A—C7—H7B108.1H21—N2—H22122.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.912.032.928 (2)173
N2—H22···O2ii0.922.102.971 (2)159
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O2S
Mr212.27
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.275 (1), 9.541 (1), 10.229 (1)
β (°) 101.80 (5)
V3)503.93 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8285, 2210, 2106
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.13
No. of reflections2210
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30
Absolute structureFlack (1983), 979 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and CrystalBuilder (DECOMET Laboratory, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.912.032.928 (2)173.0
N2—H22···O2ii0.922.102.971 (2)159.2
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr Pascal Retailleau from the Service de Cristallochimie of the Institut de Chimie des Substances Naturelles, CNRS, for help with data collection and processing. The authors acknowledge Professor Marc Lecouvey for his advice. This study was supported by the University Paris-Nord and the University of Annaba.

References

First citationBerredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationDECOMET Laboratory (2007). CrystalBuilder. DECOMET Laboratory, Louis Pasteur University, Strasbourg, France.  Google Scholar
First citationEsteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMartinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267–3273.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds