organic compounds
1,2,3,4-Tetrahydroisoquinoline-2-sulfonamide
aLaboratoire de Chimie Organique Appliquée, LCOA, Groupe de Chimie Bioorganique, Faculté des Sciences, Département de Chimie, Université d'Annaba, Algeria, and bLaboratoire de Biophysique Moléculaire Cellulaire et Tissulaire (UMR 7033 CNRS), UFR-SMBH Université Paris-Nord, 74 rue M. Cachin, 93017 Bobigny Cedex, France
*Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr
The title compound, C9H12N2O2S, is a useful precursor of a variety of modified sulfonamide molecules. Due to the importance of these molecules in biological systems (antibacterials, antidepressants and many other applications), there is a growing interest in the discovery of new biologically active compounds. In the title compound, the molecules are linked by N—H⋯O intermolecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.
Related literature
For related literature, see: Berredjem et al. (2000); Lee & Lee (2002); Martinez et al. (2000); Xiao & Timberlake (2000); Esteve & Bidal (2002); Soledade et al. (2006).
Experimental
Crystal data
|
Data collection
|
Data collection: COLLECT (Hooft, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and CrystalBuilder (DECOMET Laboratory, 2007).
Supporting information
10.1107/S1600536807068158/dn2304sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068158/dn2304Isup2.hkl
A solution of dimethyl malate (2,27 g, 14.1 mmol) in anhydrous CH2Cl2 (10 ml) was added to a stirring solution of chlorosulfonyl isocyanate (1.23 ml, 14.1 mmol) in CH2Cl2 (10 ml) at 0°C dropwise over period of 10 min. The resulting solution was transferred to a mixture of 1, 2, 3, 4 tetrahydroquinoleine (1,87 g, 14,1 mmol) in CH2Cl2 (20 ml) in the presence of triethylamine (1.1 equiv.). The solution was stirred at 0°C for less than 1.5 h. The reaction mixture was washed with HCl 0.1 N and water, and the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Two compounds were obtained after purification by silica gel
(Fig. 3). Slow evaporation at room temperature of a concentrated dichloromethane / methanol (9/1) solution of the most polar product (sulfamide I) afforded yellow crystals suitable for diffraction.All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of amino group were located in difference Fourier maps and included in the subsequent
using restraints (N—H= 0.90 (1)Å and H···H= 1.66 (2) Å) with Uiso(H) = 1.2Ueq(N). In the last stage of they were treated as riding on their parent N atom.Data collection: COLLECT (Hooft, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and CrystalBuilder (DECOMET Laboratory, 2007).C9H12N2O2S | F(000) = 224 |
Mr = 212.27 | Dx = 1.399 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: P 2yb | Cell parameters from 6025 reflections |
a = 5.275 (1) Å | θ = 2.0–27.5° |
b = 9.541 (1) Å | µ = 0.30 mm−1 |
c = 10.229 (1) Å | T = 293 K |
β = 101.80 (5)° | Parallelepipedic, yellow |
V = 503.93 (15) Å3 | 0.10 × 0.10 × 0.10 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 2106 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 27.5°, θmin = 2.0° |
Detector resolution: 9 pixels mm-1 | h = −6→6 |
ϕ and ω scans | k = −12→11 |
8285 measured reflections | l = −13→13 |
2210 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0148P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2210 reflections | Δρmax = 0.25 e Å−3 |
127 parameters | Δρmin = −0.30 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 979 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (6) |
C9H12N2O2S | V = 503.93 (15) Å3 |
Mr = 212.27 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.275 (1) Å | µ = 0.30 mm−1 |
b = 9.541 (1) Å | T = 293 K |
c = 10.229 (1) Å | 0.10 × 0.10 × 0.10 mm |
β = 101.80 (5)° |
Nonius KappaCCD diffractometer | 2106 reflections with I > 2σ(I) |
8285 measured reflections | Rint = 0.032 |
2210 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.087 | Δρmax = 0.25 e Å−3 |
S = 1.13 | Δρmin = −0.30 e Å−3 |
2210 reflections | Absolute structure: Flack (1983), 979 Friedel pairs |
127 parameters | Absolute structure parameter: −0.01 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.56649 (7) | 0.52966 (4) | 0.42439 (3) | 0.03710 (13) | |
N1 | 0.4887 (3) | 0.60389 (14) | 0.27757 (14) | 0.0369 (3) | |
C3 | 0.5408 (4) | 0.7557 (2) | 0.2719 (2) | 0.0475 (5) | |
H3A | 0.6993 | 0.7792 | 0.3345 | 0.057* | |
H3B | 0.3998 | 0.8087 | 0.2956 | 0.057* | |
O2 | 0.8298 (3) | 0.5665 (2) | 0.47635 (14) | 0.0624 (5) | |
C6 | 0.1947 (4) | 0.6250 (2) | 0.06005 (17) | 0.0415 (4) | |
C7 | 0.2282 (4) | 0.5698 (2) | 0.20079 (17) | 0.0451 (4) | |
H7A | 0.0985 | 0.6112 | 0.2439 | 0.054* | |
H7B | 0.2038 | 0.4690 | 0.1987 | 0.054* | |
C8 | 0.3113 (5) | 0.7727 (3) | −0.1068 (2) | 0.0608 (6) | |
H8 | 0.4195 | 0.8406 | −0.1311 | 0.073* | |
C9 | 0.3522 (4) | 0.7280 (2) | 0.02630 (18) | 0.0442 (4) | |
C10 | 0.1146 (5) | 0.7182 (3) | −0.2021 (2) | 0.0631 (6) | |
H10 | 0.0888 | 0.7499 | −0.2898 | 0.076* | |
C11 | −0.0028 (5) | 0.5703 (3) | −0.0374 (2) | 0.0611 (6) | |
H11 | −0.1098 | 0.5009 | −0.0146 | 0.073* | |
C12 | −0.0432 (5) | 0.6172 (3) | −0.1677 (2) | 0.0669 (7) | |
H12 | −0.1773 | 0.5802 | −0.2317 | 0.080* | |
C13 | 0.5667 (4) | 0.7918 (2) | 0.1305 (2) | 0.0538 (5) | |
H13A | 0.5636 | 0.8929 | 0.1200 | 0.065* | |
H13B | 0.7325 | 0.7582 | 0.1162 | 0.065* | |
O1 | 0.4929 (3) | 0.38595 (15) | 0.40334 (14) | 0.0580 (4) | |
N2 | 0.4032 (3) | 0.59065 (17) | 0.52808 (16) | 0.0426 (3) | |
H21 | 0.4478 | 0.6796 | 0.5540 | 0.051* | |
H22 | 0.2355 | 0.5596 | 0.5109 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0370 (2) | 0.0412 (2) | 0.03170 (18) | 0.00882 (17) | 0.00373 (13) | 0.00083 (17) |
N1 | 0.0378 (8) | 0.0365 (8) | 0.0340 (6) | 0.0022 (6) | 0.0012 (5) | 0.0019 (6) |
C3 | 0.0564 (12) | 0.0391 (10) | 0.0451 (10) | −0.0060 (8) | 0.0055 (9) | 0.0004 (8) |
O2 | 0.0313 (7) | 0.1054 (14) | 0.0475 (7) | 0.0094 (7) | 0.0011 (5) | 0.0075 (8) |
C6 | 0.0424 (10) | 0.0444 (9) | 0.0356 (8) | 0.0066 (8) | 0.0029 (7) | 0.0031 (7) |
C7 | 0.0430 (9) | 0.0500 (11) | 0.0385 (8) | −0.0071 (8) | −0.0008 (7) | 0.0080 (7) |
C8 | 0.0667 (15) | 0.0737 (15) | 0.0458 (11) | 0.0099 (12) | 0.0204 (11) | 0.0167 (11) |
C9 | 0.0457 (9) | 0.0485 (10) | 0.0399 (8) | 0.0096 (8) | 0.0122 (8) | 0.0069 (8) |
C10 | 0.0767 (15) | 0.0790 (15) | 0.0340 (9) | 0.0256 (13) | 0.0121 (10) | 0.0077 (10) |
C11 | 0.0631 (13) | 0.0690 (14) | 0.0434 (10) | −0.0081 (11) | −0.0069 (9) | 0.0031 (9) |
C12 | 0.0745 (15) | 0.0789 (17) | 0.0395 (10) | 0.0129 (13) | −0.0066 (10) | −0.0040 (10) |
C13 | 0.0525 (12) | 0.0564 (13) | 0.0514 (11) | −0.0089 (10) | 0.0080 (9) | 0.0130 (10) |
O1 | 0.0933 (12) | 0.0335 (7) | 0.0448 (7) | 0.0131 (7) | 0.0087 (7) | 0.0030 (6) |
N2 | 0.0424 (8) | 0.0439 (8) | 0.0431 (8) | −0.0024 (6) | 0.0122 (6) | −0.0091 (7) |
S1—O2 | 1.4261 (16) | C8—C10 | 1.373 (4) |
S1—O1 | 1.4293 (16) | C8—C9 | 1.401 (3) |
S1—N2 | 1.6060 (16) | C8—H8 | 0.9300 |
S1—N1 | 1.6350 (14) | C9—C13 | 1.515 (3) |
N1—C7 | 1.473 (2) | C10—C12 | 1.366 (4) |
N1—C3 | 1.478 (2) | C10—H10 | 0.9300 |
C3—C13 | 1.520 (3) | C11—C12 | 1.380 (3) |
C3—H3A | 0.9700 | C11—H11 | 0.9300 |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C6—C9 | 1.376 (3) | C13—H13A | 0.9700 |
C6—C11 | 1.388 (3) | C13—H13B | 0.9700 |
C6—C7 | 1.509 (2) | N2—H21 | 0.9059 |
C7—H7A | 0.9700 | N2—H22 | 0.9154 |
C7—H7B | 0.9700 | ||
O2—S1—O1 | 120.43 (11) | C10—C8—C9 | 121.3 (2) |
O2—S1—N2 | 106.12 (10) | C10—C8—H8 | 119.4 |
O1—S1—N2 | 106.34 (10) | C9—C8—H8 | 119.4 |
O2—S1—N1 | 106.13 (10) | C6—C9—C8 | 118.7 (2) |
O1—S1—N1 | 105.53 (8) | C6—C9—C13 | 120.86 (17) |
N2—S1—N1 | 112.45 (9) | C8—C9—C13 | 120.4 (2) |
C7—N1—C3 | 110.85 (15) | C12—C10—C8 | 119.7 (2) |
C7—N1—S1 | 115.19 (12) | C12—C10—H10 | 120.1 |
C3—N1—S1 | 116.54 (12) | C8—C10—H10 | 120.1 |
N1—C3—C13 | 108.23 (16) | C12—C11—C6 | 121.1 (2) |
N1—C3—H3A | 110.1 | C12—C11—H11 | 119.5 |
C13—C3—H3A | 110.1 | C6—C11—H11 | 119.5 |
N1—C3—H3B | 110.1 | C10—C12—C11 | 119.7 (2) |
C13—C3—H3B | 110.1 | C10—C12—H12 | 120.1 |
H3A—C3—H3B | 108.4 | C11—C12—H12 | 120.1 |
C9—C6—C11 | 119.43 (18) | C9—C13—C3 | 112.27 (17) |
C9—C6—C7 | 122.01 (17) | C9—C13—H13A | 109.1 |
C11—C6—C7 | 118.57 (18) | C3—C13—H13A | 109.1 |
N1—C7—C6 | 110.24 (15) | C9—C13—H13B | 109.1 |
N1—C7—H7A | 109.6 | C3—C13—H13B | 109.1 |
C6—C7—H7A | 109.6 | H13A—C13—H13B | 107.9 |
N1—C7—H7B | 109.6 | S1—N2—H21 | 113.0 |
C6—C7—H7B | 109.6 | S1—N2—H22 | 112.6 |
H7A—C7—H7B | 108.1 | H21—N2—H22 | 122.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O1i | 0.91 | 2.03 | 2.928 (2) | 173 |
N2—H22···O2ii | 0.92 | 2.10 | 2.971 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C9H12N2O2S |
Mr | 212.27 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 5.275 (1), 9.541 (1), 10.229 (1) |
β (°) | 101.80 (5) |
V (Å3) | 503.93 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.10 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8285, 2210, 2106 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.087, 1.13 |
No. of reflections | 2210 |
No. of parameters | 127 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.30 |
Absolute structure | Flack (1983), 979 Friedel pairs |
Absolute structure parameter | −0.01 (6) |
Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and CrystalBuilder (DECOMET Laboratory, 2007).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O1i | 0.91 | 2.03 | 2.928 (2) | 173.0 |
N2—H22···O2ii | 0.92 | 2.10 | 2.971 (2) | 159.2 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z. |
Acknowledgements
The authors thank Dr Pascal Retailleau from the Service de Cristallochimie of the Institut de Chimie des Substances Naturelles, CNRS, for help with data collection and processing. The authors acknowledge Professor Marc Lecouvey for his advice. This study was supported by the University Paris-Nord and the University of Annaba.
References
Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264. Web of Science CrossRef CAS Google Scholar
DECOMET Laboratory (2007). CrystalBuilder. DECOMET Laboratory, Louis Pasteur University, Strasbourg, France. Google Scholar
Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169. Web of Science CrossRef CAS Google Scholar
Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267–3273. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979. Web of Science PubMed Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The sulfamide unit is an ubiquitous structural entity in many naturally occurring compounds and medicinal agents (i.e. anticonvulsant, antihypertensive, hypoglycemic agents, histamine H2-receptor antagonist, herbicide, human cytomegalovirus inibitors···) (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee et al., 2002) We report herein the synthesis and the crystal structure determination of the title compound (Fig. 1).
The crystal structure consists of layers of hydrophobic regions that enclose the bicyclic moiety and polar regions where the sulfamide atoms are involved in hydrogen bond network. Namely, the sulfamide group is involved in four hydrogen bonds (2 with sulfamide O atoms, 2 with nitrogen atom) with four different symmetry-related molecules, building a two dimensional network parallel to the (0 0 1) plane (Table 1, Fig. 2).