organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)-2-methyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 December 2007; accepted 25 December 2007; online 9 January 2008)

The structure of the title compound (26DMPMA), C11H15NO, is closely related to the side-chain unsubstituted N-(2,6-dimethyl­phen­yl)acetamide and side-chain substituted N-(2,6-dimethyl­phen­yl)-2,2,2-trimethyl­acetamide and 2-chloro-N-(2,6-dimethyl­phen­yl)acetamide, with slightly different bond parameters. The mol­ecules in 26DMPMA are linked into chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004[Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69-76.], 2008[Gowda, B. T., Foro, S., Svoboda, I., Paulus, H. & Fuess, H. (2008). Acta Cryst. E64, o286.]); Gowda, Foro & Fuess (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3154.]); Gowda, Svoboda & Fuess (2007[Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3324.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO

  • Mr = 177.24

  • Monoclinic, P 21 /n

  • a = 4.7915 (7) Å

  • b = 11.593 (2) Å

  • c = 17.966 (3) Å

  • β = 96.11 (2)°

  • V = 992.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.50 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.])Tmin = 0.951, Tmax = 0.989

  • 7811 measured reflections

  • 2005 independent reflections

  • 1262 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 0.95

  • 2005 reflections

  • 164 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.889 (14) 2.065 (14) 2.9352 (15) 165.9 (12)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-methyl-N-(2,6-dimethylphenyl)- acetamide (26DMPMA) (Fig. 1) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of biologically significant compounds such as acetanilides (Gowda, Foro & Fuess, 2007); Gowda, Svoboda & Fuess, 2007); Gowda et al., 2008). The structure of 26DMPMA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda, Foro & Fuess, 2007) and side chain substituted, 2,2,2-trimethyl-N-(2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda, Svoboda & Fuess, 2007) and 2-chloro-N-(2,6-dimethylphenyl)- cetamide (26DMPCA) (Gowda et al., 2008). The bond parameters in 26DMPMA are similar to those in 26DMPA, 26DMPTMA, 26DMPCA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007; Gowda et al., 2008). The molecules in 26DMPMA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2004, 2008); Gowda, Foro & Fuess (2007); Gowda, Svoboda & Fuess (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda et al., 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.89 (1) %A and C—H = 0.96 (1)–1.02 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of a chain. Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
N-(2,6-Dimethylphenyl)-2-methylacetamide top
Crystal data top
C11H15NOF(000) = 384
Mr = 177.24Dx = 1.186 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1603 reflections
a = 4.7915 (7) Åθ = 2.1–24.9°
b = 11.593 (2) ŵ = 0.08 mm1
c = 17.966 (3) ÅT = 100 K
β = 96.11 (2)°Needle, colourless
V = 992.3 (3) Å30.50 × 0.14 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2005 independent reflections
Radiation source: fine-focus sealed tube1262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm]
h = 55
Tmin = 0.951, Tmax = 0.989k = 1314
7811 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Only H-atom coordinates refined
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
2005 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Crystal data top
C11H15NOV = 992.3 (3) Å3
Mr = 177.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.7915 (7) ŵ = 0.08 mm1
b = 11.593 (2) ÅT = 100 K
c = 17.966 (3) Å0.50 × 0.14 × 0.08 mm
β = 96.11 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2005 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm]
1262 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.989Rint = 0.036
7811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080Only H-atom coordinates refined
S = 0.95Δρmax = 0.17 e Å3
2005 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65780 (18)0.08126 (8)0.39277 (5)0.0262 (3)
N10.2247 (2)0.15987 (9)0.36988 (6)0.0189 (3)
H1N0.044 (3)0.1485 (11)0.3751 (7)0.023*
C10.3212 (2)0.27503 (11)0.36006 (6)0.0176 (3)
C20.2508 (3)0.36018 (11)0.41017 (7)0.0190 (3)
C30.3532 (3)0.47138 (12)0.40192 (7)0.0227 (3)
H30.310 (3)0.5309 (11)0.4368 (7)0.027*
C40.5195 (3)0.49761 (13)0.34589 (7)0.0240 (3)
H40.592 (3)0.5742 (12)0.3436 (7)0.029*
C50.5822 (3)0.41284 (12)0.29609 (7)0.0230 (3)
H50.699 (3)0.4338 (10)0.2572 (7)0.028*
C60.4831 (3)0.30035 (11)0.30172 (7)0.0196 (3)
C70.4008 (3)0.07132 (11)0.38927 (7)0.0191 (3)
C80.2643 (3)0.04089 (12)0.40805 (8)0.0226 (3)
H8A0.233 (3)0.0348 (11)0.4619 (8)0.027*
H8B0.078 (3)0.0457 (11)0.3814 (7)0.027*
C90.4399 (3)0.14537 (14)0.39496 (10)0.0340 (4)
H9A0.633 (4)0.1371 (13)0.4197 (8)0.051*
H9B0.362 (3)0.2172 (13)0.4137 (8)0.051*
H9C0.457 (3)0.1568 (12)0.3394 (9)0.051*
C100.0701 (3)0.33281 (14)0.47103 (8)0.0247 (4)
H10A0.132 (3)0.3315 (11)0.4530 (8)0.037*
H10B0.109 (3)0.2566 (14)0.4935 (7)0.037*
H10C0.096 (3)0.3906 (12)0.5110 (8)0.037*
C110.5511 (3)0.21070 (14)0.24562 (8)0.0257 (4)
H11A0.408 (3)0.1505 (12)0.2393 (7)0.039*
H11B0.586 (3)0.2484 (12)0.1971 (8)0.039*
H11C0.726 (3)0.1670 (11)0.2640 (7)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0137 (5)0.0268 (6)0.0384 (6)0.0012 (4)0.0041 (4)0.0058 (4)
N10.0109 (6)0.0207 (7)0.0258 (6)0.0004 (5)0.0047 (5)0.0015 (5)
C10.0123 (7)0.0189 (8)0.0213 (7)0.0010 (6)0.0006 (5)0.0026 (6)
C20.0144 (7)0.0225 (8)0.0200 (7)0.0055 (6)0.0009 (5)0.0025 (6)
C30.0219 (7)0.0218 (9)0.0243 (7)0.0049 (7)0.0022 (6)0.0031 (6)
C40.0232 (8)0.0203 (8)0.0285 (8)0.0022 (7)0.0024 (7)0.0029 (7)
C50.0211 (7)0.0272 (9)0.0214 (7)0.0004 (7)0.0048 (6)0.0040 (6)
C60.0154 (7)0.0230 (8)0.0199 (7)0.0016 (6)0.0001 (6)0.0006 (6)
C70.0163 (7)0.0220 (8)0.0193 (7)0.0017 (6)0.0030 (5)0.0013 (6)
C80.0174 (7)0.0227 (8)0.0281 (8)0.0003 (7)0.0051 (6)0.0015 (6)
C90.0236 (8)0.0234 (9)0.0556 (11)0.0020 (7)0.0068 (8)0.0068 (8)
C100.0226 (8)0.0282 (9)0.0243 (8)0.0021 (7)0.0072 (6)0.0002 (6)
C110.0270 (8)0.0284 (9)0.0224 (7)0.0009 (7)0.0065 (6)0.0030 (6)
Geometric parameters (Å, º) top
O1—C71.2317 (15)C6—C111.5073 (18)
N1—C71.3509 (16)C7—C81.5101 (18)
N1—C11.4299 (16)C8—C91.508 (2)
N1—H1N0.889 (14)C8—H8A0.998 (14)
C1—C61.4000 (17)C8—H8B0.968 (13)
C1—C21.4012 (17)C9—H9A0.988 (16)
C2—C31.3928 (18)C9—H9B0.987 (15)
C2—C101.4994 (19)C9—H9C1.020 (17)
C3—C41.3828 (18)C10—H10A0.986 (15)
C3—H30.969 (13)C10—H10B0.982 (15)
C4—C51.3834 (19)C10—H10C0.981 (14)
C4—H40.957 (13)C11—H11A0.978 (15)
C5—C61.3952 (18)C11—H11B1.005 (14)
C5—H50.973 (13)C11—H11C1.003 (15)
C7—N1—C1122.69 (11)C9—C8—C7113.27 (12)
C7—N1—H1N116.6 (8)C9—C8—H8A110.7 (7)
C1—N1—H1N118.8 (8)C7—C8—H8A105.7 (7)
C6—C1—C2121.59 (12)C9—C8—H8B112.1 (8)
C6—C1—N1120.03 (11)C7—C8—H8B109.7 (8)
C2—C1—N1118.38 (11)H8A—C8—H8B104.9 (11)
C3—C2—C1118.17 (12)C8—C9—H9A111.4 (9)
C3—C2—C10120.71 (12)C8—C9—H9B112.7 (9)
C1—C2—C10121.11 (12)H9A—C9—H9B107.5 (12)
C4—C3—C2121.19 (13)C8—C9—H9C111.2 (8)
C4—C3—H3119.6 (8)H9A—C9—H9C106.5 (13)
C2—C3—H3119.2 (8)H9B—C9—H9C107.3 (12)
C3—C4—C5119.76 (13)C2—C10—H10A112.7 (8)
C3—C4—H4118.4 (8)C2—C10—H10B113.0 (8)
C5—C4—H4121.8 (8)H10A—C10—H10B105.1 (12)
C4—C5—C6121.20 (13)C2—C10—H10C110.5 (8)
C4—C5—H5118.0 (7)H10A—C10—H10C107.2 (12)
C6—C5—H5120.8 (7)H10B—C10—H10C108.0 (11)
C5—C6—C1118.05 (12)C6—C11—H11A111.7 (9)
C5—C6—C11119.78 (12)C6—C11—H11B110.3 (8)
C1—C6—C11122.17 (12)H11A—C11—H11B112.9 (11)
O1—C7—N1122.39 (13)C6—C11—H11C111.1 (8)
O1—C7—C8121.57 (12)H11A—C11—H11C103.2 (11)
N1—C7—C8116.02 (11)H11B—C11—H11C107.3 (11)
C7—N1—C1—C665.81 (15)C4—C5—C6—C10.93 (19)
C7—N1—C1—C2113.86 (13)C4—C5—C6—C11178.87 (12)
C6—C1—C2—C31.77 (18)C2—C1—C6—C52.20 (17)
N1—C1—C2—C3177.88 (11)N1—C1—C6—C5177.45 (11)
C6—C1—C2—C10178.15 (12)C2—C1—C6—C11177.59 (12)
N1—C1—C2—C102.20 (17)N1—C1—C6—C112.75 (17)
C1—C2—C3—C40.06 (18)C1—N1—C7—O17.20 (19)
C10—C2—C3—C4179.86 (12)C1—N1—C7—C8171.64 (11)
C2—C3—C4—C51.17 (19)O1—C7—C8—C927.34 (19)
C3—C4—C5—C60.7 (2)N1—C7—C8—C9153.81 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.889 (14)2.065 (14)2.9352 (15)165.9 (12)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H15NO
Mr177.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.7915 (7), 11.593 (2), 17.966 (3)
β (°) 96.11 (2)
V3)992.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm]
Tmin, Tmax0.951, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7811, 2005, 1262
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 0.95
No. of reflections2005
No. of parameters164
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.889 (14)2.065 (14)2.9352 (15)165.9 (12)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Svoboda, I., Paulus, H. & Fuess, H. (2008). Acta Cryst. E64, o286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69–76.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds