organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 December 2007; accepted 31 December 2007; online 9 January 2008)

The conformation of the N—H bond in the structure of the title compound (3CPA), C8H8ClNO, is anti to the meta-chloro substituent, in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chloro­phen­yl)acetamide, syn to both the ortho and meta chloro substituents in N-(2,3-dichloro­phen­yl)acetamide, and syn to the ortho chloro substituent in N-(2,4-dichloro­phen­yl)acetamide. There are two mol­ecules, linked by an N—H⋯O hydrogen bond, in the asymmetric unit of 3CPA. The bond parameters in 3CPA are similar to those of other acetanilides and the mol­ecules are packed into chains through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.]); Gowda, Foro & Fuess (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2631-o2632.]); Gowda, Svoboda & Fuess (2007[Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.]); Pies et al. (1971[Pies, W., Rager, H. & Weiss, A. (1971). Org. Mag. Reson. 3, 147-176.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO

  • Mr = 169.60

  • Orthorhombic, P 21 21 21

  • a = 4.8468 (8) Å

  • b = 18.562 (2) Å

  • c = 18.852 (3) Å

  • V = 1696.0 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.51 mm−1

  • T = 299 (2) K

  • 0.60 × 0.15 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.225, Tmax = 0.756

  • 3119 measured reflections

  • 2780 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.224

  • S = 1.07

  • 2780 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 987 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.00 (2) 2.846 (5) 166 (6)
N2—H2N⋯O1 0.830 (19) 2.11 (2) 2.927 (5) 167 (6)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of N-(3-chlorophenyl)-acetamide (3CPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The conformation of the N—H bond in the structure of 3CPA (Fig. 1) is anti to the meta-chloro substituent in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chlorophenyl)-acetamide (2CPA)(Gowda, Svoboda & Fuess, 2007), syn to both the ortho and meta Chloro substituents in N-(2,3-dichlorophenyl)-acetamide(23DCPA)(Gowda, Foro & Fuess, 2007) and syn to the ortho-chloro substituent in N-(2,4-dichlorophenyl)-acetamide (24DCPA)(Gowda, Svoboda & Fuess, 2007). The structure of 3CPA has two molecules linked by N—H···O hydrogen bond in its asymmetric unit. The geometric parameters of 3CPA are similar to those of 2CPA, 23DCPA, 24DCPA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The molecules are linked by hydrogen bonds, N1H1NO2 and N2H2NO1 with respective H1N O2 and H2N O1 lenghts of 2.00 and 2.11 Å, and the angles, N1 H1N O2 and N2 H2N O1 of 166 and 167 °, respectively (Table 1 & Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Svoboda & Fuess (2007); Pies et al. (1971).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2006). The purity of the compound was checked by determining its melting point. The compound was characterized by recording its infrared,NMR and NQR spectra (Gowda et al., 2006 and Pies et al., 1971). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The NH atoms were located in difference map with N—H = 0.83 (2)–0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x, y - 1/2, 1/2 - z]
N-(3-Chlorophenyl)acetamide top
Crystal data top
C8H8ClNOF(000) = 704
Mr = 169.60Dx = 1.328 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 4.8468 (8) Åθ = 4.8–19.8°
b = 18.562 (2) ŵ = 3.51 mm1
c = 18.852 (3) ÅT = 299 K
V = 1696.0 (4) Å3Needle, colourless
Z = 80.60 × 0.15 × 0.08 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
2098 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 67.0°, θmin = 3.3°
ω/2θ scansh = 50
Absorption correction: ψ scan
(North et al., 1968)
k = 220
Tmin = 0.225, Tmax = 0.757l = 2214
3119 measured reflections3 standard reflections every 120 min
2780 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1656P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2780 reflectionsΔρmax = 0.43 e Å3
207 parametersΔρmin = 0.59 e Å3
2 restraintsAbsolute structure: Flack (1983), 987 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
C8H8ClNOV = 1696.0 (4) Å3
Mr = 169.60Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 4.8468 (8) ŵ = 3.51 mm1
b = 18.562 (2) ÅT = 299 K
c = 18.852 (3) Å0.60 × 0.15 × 0.08 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
2098 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.225, Tmax = 0.7573 standard reflections every 120 min
3119 measured reflections intensity decay: 2.0%
2780 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.082H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.224Δρmax = 0.43 e Å3
S = 1.07Δρmin = 0.59 e Å3
2780 reflectionsAbsolute structure: Flack (1983), 987 Friedel pairs
207 parametersAbsolute structure parameter: 0.00 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3831 (6)0.37160 (11)0.39860 (11)0.1367 (10)
O10.0630 (10)0.23187 (18)0.2036 (2)0.0880 (12)
N10.0399 (8)0.14104 (19)0.2789 (2)0.0641 (10)
H1N0.028 (12)0.0957 (12)0.288 (3)0.077*
C10.2186 (9)0.1757 (2)0.3267 (3)0.0609 (11)
C20.2211 (11)0.2491 (3)0.3358 (3)0.0687 (13)
H20.10680.27820.30840.082*
C30.3931 (14)0.2792 (4)0.3853 (3)0.0854 (17)
C40.5720 (14)0.2367 (6)0.4257 (4)0.108 (3)
H40.69150.25750.45840.130*
C50.5665 (16)0.1649 (6)0.4158 (4)0.116 (3)
H50.68510.13590.44210.139*
C60.3871 (13)0.1324 (4)0.3669 (3)0.0868 (16)
H60.38230.08250.36190.104*
C70.0907 (10)0.1695 (2)0.2219 (3)0.0608 (11)
C80.2696 (12)0.1186 (3)0.1825 (3)0.0804 (15)
H8A0.23260.07030.19800.121*
H8B0.23250.12250.13260.121*
H8C0.45970.13010.19130.121*
Cl20.6744 (5)0.49383 (10)0.03716 (11)0.1181 (8)
O20.0909 (9)0.49682 (17)0.1824 (2)0.0865 (12)
N20.1055 (8)0.37741 (16)0.1625 (2)0.0552 (9)
H2N0.085 (12)0.3348 (13)0.175 (3)0.066*
C90.3111 (8)0.3741 (2)0.1092 (2)0.0493 (9)
C100.3766 (11)0.4316 (2)0.0668 (3)0.0635 (12)
H100.28640.47560.07150.076*
C110.5868 (12)0.4215 (3)0.0158 (3)0.0679 (13)
C120.7118 (10)0.3568 (3)0.0071 (3)0.0675 (12)
H120.84370.35100.02830.081*
C130.6462 (10)0.3011 (3)0.0493 (3)0.0673 (13)
H130.73740.25730.04410.081*
C140.4402 (9)0.3086 (2)0.1013 (3)0.0587 (11)
H140.39200.26980.13000.070*
C150.0080 (9)0.4367 (2)0.1948 (3)0.0593 (11)
C160.2118 (12)0.4235 (3)0.2501 (3)0.0800 (15)
H16A0.27540.37460.24670.120*
H16B0.36360.45580.24230.120*
H16C0.13620.43170.29640.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.172 (2)0.1231 (14)0.1148 (14)0.0737 (15)0.0260 (16)0.0395 (11)
O10.094 (3)0.0659 (19)0.104 (3)0.0177 (19)0.023 (2)0.0274 (19)
N10.057 (2)0.0524 (18)0.082 (3)0.0095 (16)0.003 (2)0.0140 (19)
C10.041 (2)0.075 (3)0.067 (3)0.0049 (19)0.003 (2)0.008 (2)
C20.058 (3)0.078 (3)0.070 (3)0.014 (2)0.005 (3)0.003 (2)
C30.068 (4)0.115 (4)0.073 (3)0.034 (3)0.023 (3)0.011 (3)
C40.053 (3)0.188 (8)0.083 (4)0.032 (4)0.001 (3)0.026 (5)
C50.075 (4)0.176 (8)0.097 (5)0.034 (5)0.025 (4)0.007 (5)
C60.070 (3)0.104 (4)0.086 (4)0.020 (3)0.010 (3)0.007 (3)
C70.054 (2)0.055 (2)0.073 (3)0.0023 (19)0.003 (2)0.009 (2)
C80.062 (3)0.085 (3)0.093 (4)0.013 (3)0.010 (3)0.001 (3)
Cl20.1326 (17)0.1002 (11)0.1217 (13)0.0127 (11)0.0357 (13)0.0404 (10)
O20.086 (3)0.0506 (16)0.123 (3)0.0048 (19)0.018 (2)0.0152 (18)
N20.0491 (18)0.0411 (15)0.075 (2)0.0052 (15)0.0041 (19)0.0026 (16)
C90.0391 (18)0.0504 (19)0.058 (2)0.0029 (15)0.0012 (19)0.0094 (18)
C100.058 (3)0.051 (2)0.081 (3)0.005 (2)0.004 (2)0.006 (2)
C110.067 (3)0.071 (3)0.066 (3)0.016 (2)0.001 (3)0.007 (2)
C120.047 (2)0.081 (3)0.075 (3)0.002 (2)0.007 (2)0.007 (3)
C130.040 (2)0.072 (3)0.090 (3)0.009 (2)0.008 (2)0.009 (2)
C140.051 (2)0.050 (2)0.075 (3)0.0008 (18)0.003 (2)0.001 (2)
C150.052 (2)0.053 (2)0.073 (3)0.0010 (18)0.000 (2)0.007 (2)
C160.054 (3)0.089 (3)0.097 (4)0.004 (2)0.012 (3)0.015 (3)
Geometric parameters (Å, º) top
Cl1—C31.735 (7)Cl2—C111.726 (5)
O1—C71.215 (5)O2—C151.209 (6)
N1—C71.355 (6)N2—C151.343 (5)
N1—C11.406 (6)N2—C91.416 (5)
N1—H1N0.86 (2)N2—H2N0.830 (19)
C1—C21.373 (7)C9—C101.371 (6)
C1—C61.375 (7)C9—C141.376 (6)
C2—C31.371 (8)C10—C111.414 (8)
C2—H20.9300C10—H100.9300
C3—C41.397 (11)C11—C121.354 (7)
C4—C51.347 (12)C12—C131.343 (7)
C4—H40.9300C12—H120.9300
C5—C61.403 (10)C13—C141.407 (7)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.482 (7)C15—C161.511 (7)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C7—N1—C1128.1 (4)C15—N2—C9127.2 (4)
C7—N1—H1N121 (4)C15—N2—H2N128 (4)
C1—N1—H1N111 (4)C9—N2—H2N104 (4)
C2—C1—C6120.5 (5)C10—C9—C14121.3 (4)
C2—C1—N1122.6 (4)C10—C9—N2122.9 (4)
C6—C1—N1116.8 (5)C14—C9—N2115.8 (4)
C3—C2—C1119.6 (6)C9—C10—C11117.4 (4)
C3—C2—H2120.2C9—C10—H10121.3
C1—C2—H2120.2C11—C10—H10121.3
C2—C3—C4121.3 (7)C12—C11—C10121.5 (4)
C2—C3—Cl1118.9 (6)C12—C11—Cl2120.6 (4)
C4—C3—Cl1119.8 (6)C10—C11—Cl2117.8 (4)
C5—C4—C3118.1 (6)C13—C12—C11120.3 (5)
C5—C4—H4121.0C13—C12—H12119.8
C3—C4—H4121.0C11—C12—H12119.8
C4—C5—C6121.9 (7)C12—C13—C14120.4 (4)
C4—C5—H5119.0C12—C13—H13119.8
C6—C5—H5119.0C14—C13—H13119.8
C1—C6—C5118.6 (6)C9—C14—C13119.0 (4)
C1—C6—H6120.7C9—C14—H14120.5
C5—C6—H6120.7C13—C14—H14120.5
O1—C7—N1123.0 (5)O2—C15—N2123.5 (5)
O1—C7—C8122.0 (5)O2—C15—C16121.1 (4)
N1—C7—C8114.9 (4)N2—C15—C16115.4 (4)
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—N1—C1—C221.1 (8)C15—N2—C9—C1022.1 (7)
C7—N1—C1—C6161.3 (5)C15—N2—C9—C14159.1 (5)
C6—C1—C2—C30.0 (8)C14—C9—C10—C111.5 (7)
N1—C1—C2—C3177.5 (5)N2—C9—C10—C11179.8 (4)
C1—C2—C3—C41.8 (8)C9—C10—C11—C122.4 (8)
C1—C2—C3—Cl1177.4 (4)C9—C10—C11—Cl2179.1 (4)
C2—C3—C4—C51.6 (10)C10—C11—C12—C132.8 (8)
Cl1—C3—C4—C5177.5 (6)Cl2—C11—C12—C13178.8 (4)
C3—C4—C5—C60.3 (12)C11—C12—C13—C142.2 (8)
C2—C1—C6—C51.8 (9)C10—C9—C14—C130.9 (7)
N1—C1—C6—C5179.4 (6)N2—C9—C14—C13179.8 (4)
C4—C5—C6—C12.0 (11)C12—C13—C14—C91.3 (7)
C1—N1—C7—O11.5 (8)C9—N2—C15—O21.2 (8)
C1—N1—C7—C8179.1 (5)C9—N2—C15—C16179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.00 (2)2.846 (5)166 (6)
N2—H2N···O10.83 (2)2.11 (2)2.927 (5)167 (6)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO
Mr169.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)4.8468 (8), 18.562 (2), 18.852 (3)
V3)1696.0 (4)
Z8
Radiation typeCu Kα
µ (mm1)3.51
Crystal size (mm)0.60 × 0.15 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.225, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
3119, 2780, 2098
Rint0.019
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.224, 1.07
No. of reflections2780
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.59
Absolute structureFlack (1983), 987 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.00 (2)2.846 (5)166 (6)
N2—H2N···O10.830 (19)2.11 (2)2.927 (5)167 (6)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2631–o2632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPies, W., Rager, H. & Weiss, A. (1971). Org. Mag. Reson. 3, 147–176.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds