organic compounds
N-(3-Chlorophenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The conformation of the N—H bond in the structure of the title compound (3CPA), C8H8ClNO, is anti to the meta-chloro substituent, in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chlorophenyl)acetamide, syn to both the ortho and meta chloro substituents in N-(2,3-dichlorophenyl)acetamide, and syn to the ortho chloro substituent in N-(2,4-dichlorophenyl)acetamide. There are two molecules, linked by an N—H⋯O hydrogen bond, in the of 3CPA. The bond parameters in 3CPA are similar to those of other acetanilides and the molecules are packed into chains through intermolecular N—H⋯O hydrogen bonds.
Related literature
For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Svoboda & Fuess (2007); Pies et al. (1971).
Experimental
Crystal data
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807068808/dn2306sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807068808/dn2306Isup2.hkl
The title compound was prepared according to the literature method (Gowda et al., 2006). The purity of the compound was checked by determining its melting point. The compound was characterized by recording its infrared,NMR and NQR spectra (Gowda et al., 2006 and Pies et al., 1971). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
The NH atoms were located in difference map with N—H = 0.83 (2)–0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H8ClNO | F(000) = 704 |
Mr = 169.60 | Dx = 1.328 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 4.8468 (8) Å | θ = 4.8–19.8° |
b = 18.562 (2) Å | µ = 3.51 mm−1 |
c = 18.852 (3) Å | T = 299 K |
V = 1696.0 (4) Å3 | Needle, colourless |
Z = 8 | 0.60 × 0.15 × 0.08 mm |
Enraf–Nonius CAD4 diffractometer | 2098 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 67.0°, θmin = 3.3° |
ω/2θ scans | h = −5→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −22→0 |
Tmin = 0.225, Tmax = 0.757 | l = −22→14 |
3119 measured reflections | 3 standard reflections every 120 min |
2780 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.224 | w = 1/[σ2(Fo2) + (0.1656P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.002 |
2780 reflections | Δρmax = 0.43 e Å−3 |
207 parameters | Δρmin = −0.59 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 987 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (4) |
C8H8ClNO | V = 1696.0 (4) Å3 |
Mr = 169.60 | Z = 8 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 4.8468 (8) Å | µ = 3.51 mm−1 |
b = 18.562 (2) Å | T = 299 K |
c = 18.852 (3) Å | 0.60 × 0.15 × 0.08 mm |
Enraf–Nonius CAD4 diffractometer | 2098 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.019 |
Tmin = 0.225, Tmax = 0.757 | 3 standard reflections every 120 min |
3119 measured reflections | intensity decay: 2.0% |
2780 independent reflections |
R[F2 > 2σ(F2)] = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.224 | Δρmax = 0.43 e Å−3 |
S = 1.07 | Δρmin = −0.59 e Å−3 |
2780 reflections | Absolute structure: Flack (1983), 987 Friedel pairs |
207 parameters | Absolute structure parameter: 0.00 (4) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.3831 (6) | 0.37160 (11) | 0.39860 (11) | 0.1367 (10) | |
O1 | −0.0630 (10) | 0.23187 (18) | 0.2036 (2) | 0.0880 (12) | |
N1 | 0.0399 (8) | 0.14104 (19) | 0.2789 (2) | 0.0641 (10) | |
H1N | 0.028 (12) | 0.0957 (12) | 0.288 (3) | 0.077* | |
C1 | 0.2186 (9) | 0.1757 (2) | 0.3267 (3) | 0.0609 (11) | |
C2 | 0.2211 (11) | 0.2491 (3) | 0.3358 (3) | 0.0687 (13) | |
H2 | 0.1068 | 0.2782 | 0.3084 | 0.082* | |
C3 | 0.3931 (14) | 0.2792 (4) | 0.3853 (3) | 0.0854 (17) | |
C4 | 0.5720 (14) | 0.2367 (6) | 0.4257 (4) | 0.108 (3) | |
H4 | 0.6915 | 0.2575 | 0.4584 | 0.130* | |
C5 | 0.5665 (16) | 0.1649 (6) | 0.4158 (4) | 0.116 (3) | |
H5 | 0.6851 | 0.1359 | 0.4421 | 0.139* | |
C6 | 0.3871 (13) | 0.1324 (4) | 0.3669 (3) | 0.0868 (16) | |
H6 | 0.3823 | 0.0825 | 0.3619 | 0.104* | |
C7 | −0.0907 (10) | 0.1695 (2) | 0.2219 (3) | 0.0608 (11) | |
C8 | −0.2696 (12) | 0.1186 (3) | 0.1825 (3) | 0.0804 (15) | |
H8A | −0.2326 | 0.0703 | 0.1980 | 0.121* | |
H8B | −0.2325 | 0.1225 | 0.1326 | 0.121* | |
H8C | −0.4597 | 0.1301 | 0.1913 | 0.121* | |
Cl2 | 0.6744 (5) | 0.49383 (10) | −0.03716 (11) | 0.1181 (8) | |
O2 | 0.0909 (9) | 0.49682 (17) | 0.1824 (2) | 0.0865 (12) | |
N2 | 0.1055 (8) | 0.37741 (16) | 0.1625 (2) | 0.0552 (9) | |
H2N | 0.085 (12) | 0.3348 (13) | 0.175 (3) | 0.066* | |
C9 | 0.3111 (8) | 0.3741 (2) | 0.1092 (2) | 0.0493 (9) | |
C10 | 0.3766 (11) | 0.4316 (2) | 0.0668 (3) | 0.0635 (12) | |
H10 | 0.2864 | 0.4756 | 0.0715 | 0.076* | |
C11 | 0.5868 (12) | 0.4215 (3) | 0.0158 (3) | 0.0679 (13) | |
C12 | 0.7118 (10) | 0.3568 (3) | 0.0071 (3) | 0.0675 (12) | |
H12 | 0.8437 | 0.3510 | −0.0283 | 0.081* | |
C13 | 0.6462 (10) | 0.3011 (3) | 0.0493 (3) | 0.0673 (13) | |
H13 | 0.7374 | 0.2573 | 0.0441 | 0.081* | |
C14 | 0.4402 (9) | 0.3086 (2) | 0.1013 (3) | 0.0587 (11) | |
H14 | 0.3920 | 0.2698 | 0.1300 | 0.070* | |
C15 | 0.0080 (9) | 0.4367 (2) | 0.1948 (3) | 0.0593 (11) | |
C16 | −0.2118 (12) | 0.4235 (3) | 0.2501 (3) | 0.0800 (15) | |
H16A | −0.2754 | 0.3746 | 0.2467 | 0.120* | |
H16B | −0.3636 | 0.4558 | 0.2423 | 0.120* | |
H16C | −0.1362 | 0.4317 | 0.2964 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.172 (2) | 0.1231 (14) | 0.1148 (14) | −0.0737 (15) | 0.0260 (16) | −0.0395 (11) |
O1 | 0.094 (3) | 0.0659 (19) | 0.104 (3) | −0.0177 (19) | −0.023 (2) | 0.0274 (19) |
N1 | 0.057 (2) | 0.0524 (18) | 0.082 (3) | −0.0095 (16) | −0.003 (2) | 0.0140 (19) |
C1 | 0.041 (2) | 0.075 (3) | 0.067 (3) | −0.0049 (19) | 0.003 (2) | 0.008 (2) |
C2 | 0.058 (3) | 0.078 (3) | 0.070 (3) | −0.014 (2) | 0.005 (3) | 0.003 (2) |
C3 | 0.068 (4) | 0.115 (4) | 0.073 (3) | −0.034 (3) | 0.023 (3) | −0.011 (3) |
C4 | 0.053 (3) | 0.188 (8) | 0.083 (4) | −0.032 (4) | −0.001 (3) | −0.026 (5) |
C5 | 0.075 (4) | 0.176 (8) | 0.097 (5) | 0.034 (5) | −0.025 (4) | −0.007 (5) |
C6 | 0.070 (3) | 0.104 (4) | 0.086 (4) | 0.020 (3) | −0.010 (3) | 0.007 (3) |
C7 | 0.054 (2) | 0.055 (2) | 0.073 (3) | −0.0023 (19) | −0.003 (2) | 0.009 (2) |
C8 | 0.062 (3) | 0.085 (3) | 0.093 (4) | −0.013 (3) | −0.010 (3) | 0.001 (3) |
Cl2 | 0.1326 (17) | 0.1002 (11) | 0.1217 (13) | −0.0127 (11) | 0.0357 (13) | 0.0404 (10) |
O2 | 0.086 (3) | 0.0506 (16) | 0.123 (3) | 0.0048 (19) | 0.018 (2) | −0.0152 (18) |
N2 | 0.0491 (18) | 0.0411 (15) | 0.075 (2) | −0.0052 (15) | 0.0041 (19) | −0.0026 (16) |
C9 | 0.0391 (18) | 0.0504 (19) | 0.058 (2) | −0.0029 (15) | −0.0012 (19) | −0.0094 (18) |
C10 | 0.058 (3) | 0.051 (2) | 0.081 (3) | 0.005 (2) | 0.004 (2) | 0.006 (2) |
C11 | 0.067 (3) | 0.071 (3) | 0.066 (3) | −0.016 (2) | 0.001 (3) | 0.007 (2) |
C12 | 0.047 (2) | 0.081 (3) | 0.075 (3) | −0.002 (2) | 0.007 (2) | −0.007 (3) |
C13 | 0.040 (2) | 0.072 (3) | 0.090 (3) | 0.009 (2) | 0.008 (2) | −0.009 (2) |
C14 | 0.051 (2) | 0.050 (2) | 0.075 (3) | −0.0008 (18) | −0.003 (2) | 0.001 (2) |
C15 | 0.052 (2) | 0.053 (2) | 0.073 (3) | 0.0010 (18) | 0.000 (2) | −0.007 (2) |
C16 | 0.054 (3) | 0.089 (3) | 0.097 (4) | 0.004 (2) | 0.012 (3) | −0.015 (3) |
Cl1—C3 | 1.735 (7) | Cl2—C11 | 1.726 (5) |
O1—C7 | 1.215 (5) | O2—C15 | 1.209 (6) |
N1—C7 | 1.355 (6) | N2—C15 | 1.343 (5) |
N1—C1 | 1.406 (6) | N2—C9 | 1.416 (5) |
N1—H1N | 0.86 (2) | N2—H2N | 0.830 (19) |
C1—C2 | 1.373 (7) | C9—C10 | 1.371 (6) |
C1—C6 | 1.375 (7) | C9—C14 | 1.376 (6) |
C2—C3 | 1.371 (8) | C10—C11 | 1.414 (8) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.397 (11) | C11—C12 | 1.354 (7) |
C4—C5 | 1.347 (12) | C12—C13 | 1.343 (7) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.403 (10) | C13—C14 | 1.407 (7) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.482 (7) | C15—C16 | 1.511 (7) |
C8—H8A | 0.9600 | C16—H16A | 0.9600 |
C8—H8B | 0.9600 | C16—H16B | 0.9600 |
C8—H8C | 0.9600 | C16—H16C | 0.9600 |
C7—N1—C1 | 128.1 (4) | C15—N2—C9 | 127.2 (4) |
C7—N1—H1N | 121 (4) | C15—N2—H2N | 128 (4) |
C1—N1—H1N | 111 (4) | C9—N2—H2N | 104 (4) |
C2—C1—C6 | 120.5 (5) | C10—C9—C14 | 121.3 (4) |
C2—C1—N1 | 122.6 (4) | C10—C9—N2 | 122.9 (4) |
C6—C1—N1 | 116.8 (5) | C14—C9—N2 | 115.8 (4) |
C3—C2—C1 | 119.6 (6) | C9—C10—C11 | 117.4 (4) |
C3—C2—H2 | 120.2 | C9—C10—H10 | 121.3 |
C1—C2—H2 | 120.2 | C11—C10—H10 | 121.3 |
C2—C3—C4 | 121.3 (7) | C12—C11—C10 | 121.5 (4) |
C2—C3—Cl1 | 118.9 (6) | C12—C11—Cl2 | 120.6 (4) |
C4—C3—Cl1 | 119.8 (6) | C10—C11—Cl2 | 117.8 (4) |
C5—C4—C3 | 118.1 (6) | C13—C12—C11 | 120.3 (5) |
C5—C4—H4 | 121.0 | C13—C12—H12 | 119.8 |
C3—C4—H4 | 121.0 | C11—C12—H12 | 119.8 |
C4—C5—C6 | 121.9 (7) | C12—C13—C14 | 120.4 (4) |
C4—C5—H5 | 119.0 | C12—C13—H13 | 119.8 |
C6—C5—H5 | 119.0 | C14—C13—H13 | 119.8 |
C1—C6—C5 | 118.6 (6) | C9—C14—C13 | 119.0 (4) |
C1—C6—H6 | 120.7 | C9—C14—H14 | 120.5 |
C5—C6—H6 | 120.7 | C13—C14—H14 | 120.5 |
O1—C7—N1 | 123.0 (5) | O2—C15—N2 | 123.5 (5) |
O1—C7—C8 | 122.0 (5) | O2—C15—C16 | 121.1 (4) |
N1—C7—C8 | 114.9 (4) | N2—C15—C16 | 115.4 (4) |
C7—C8—H8A | 109.5 | C15—C16—H16A | 109.5 |
C7—C8—H8B | 109.5 | C15—C16—H16B | 109.5 |
H8A—C8—H8B | 109.5 | H16A—C16—H16B | 109.5 |
C7—C8—H8C | 109.5 | C15—C16—H16C | 109.5 |
H8A—C8—H8C | 109.5 | H16A—C16—H16C | 109.5 |
H8B—C8—H8C | 109.5 | H16B—C16—H16C | 109.5 |
C7—N1—C1—C2 | 21.1 (8) | C15—N2—C9—C10 | −22.1 (7) |
C7—N1—C1—C6 | −161.3 (5) | C15—N2—C9—C14 | 159.1 (5) |
C6—C1—C2—C3 | 0.0 (8) | C14—C9—C10—C11 | −1.5 (7) |
N1—C1—C2—C3 | 177.5 (5) | N2—C9—C10—C11 | 179.8 (4) |
C1—C2—C3—C4 | 1.8 (8) | C9—C10—C11—C12 | 2.4 (8) |
C1—C2—C3—Cl1 | −177.4 (4) | C9—C10—C11—Cl2 | −179.1 (4) |
C2—C3—C4—C5 | −1.6 (10) | C10—C11—C12—C13 | −2.8 (8) |
Cl1—C3—C4—C5 | 177.5 (6) | Cl2—C11—C12—C13 | 178.8 (4) |
C3—C4—C5—C6 | −0.3 (12) | C11—C12—C13—C14 | 2.2 (8) |
C2—C1—C6—C5 | −1.8 (9) | C10—C9—C14—C13 | 0.9 (7) |
N1—C1—C6—C5 | −179.4 (6) | N2—C9—C14—C13 | 179.8 (4) |
C4—C5—C6—C1 | 2.0 (11) | C12—C13—C14—C9 | −1.3 (7) |
C1—N1—C7—O1 | 1.5 (8) | C9—N2—C15—O2 | −1.2 (8) |
C1—N1—C7—C8 | −179.1 (5) | C9—N2—C15—C16 | −179.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 (2) | 2.00 (2) | 2.846 (5) | 166 (6) |
N2—H2N···O1 | 0.83 (2) | 2.11 (2) | 2.927 (5) | 167 (6) |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H8ClNO |
Mr | 169.60 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 299 |
a, b, c (Å) | 4.8468 (8), 18.562 (2), 18.852 (3) |
V (Å3) | 1696.0 (4) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 3.51 |
Crystal size (mm) | 0.60 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Enraf–Nonius CAD4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.225, 0.757 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3119, 2780, 2098 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.082, 0.224, 1.07 |
No. of reflections | 2780 |
No. of parameters | 207 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.59 |
Absolute structure | Flack (1983), 987 Friedel pairs |
Absolute structure parameter | 0.00 (4) |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 (2) | 2.00 (2) | 2.846 (5) | 166 (6) |
N2—H2N···O1 | 0.830 (19) | 2.11 (2) | 2.927 (5) | 167 (6) |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2631–o2632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599. CAS Google Scholar
Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pies, W., Rager, H. & Weiss, A. (1971). Org. Mag. Reson. 3, 147–176. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of N-(3-chlorophenyl)-acetamide (3CPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The conformation of the N—H bond in the structure of 3CPA (Fig. 1) is anti to the meta-chloro substituent in contrast to the syn conformation observed for the ortho-chloro substituent in N-(2-chlorophenyl)-acetamide (2CPA)(Gowda, Svoboda & Fuess, 2007), syn to both the ortho and meta Chloro substituents in N-(2,3-dichlorophenyl)-acetamide(23DCPA)(Gowda, Foro & Fuess, 2007) and syn to the ortho-chloro substituent in N-(2,4-dichlorophenyl)-acetamide (24DCPA)(Gowda, Svoboda & Fuess, 2007). The structure of 3CPA has two molecules linked by N—H···O hydrogen bond in its asymmetric unit. The geometric parameters of 3CPA are similar to those of 2CPA, 23DCPA, 24DCPA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007). The molecules are linked by hydrogen bonds, N1H1NO2 and N2H2NO1 with respective H1N O2 and H2N O1 lenghts of 2.00 and 2.11 Å, and the angles, N1 H1N O2 and N2 H2N O1 of 166 and 167 °, respectively (Table 1 & Fig. 2).