organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(3-nitro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 December 2007; accepted 31 December 2007; online 9 January 2008)

The conformation of the N—H bond in the structure of the title compound (3NPDCA), C8H6Cl2N2O3, is anti to the meta-nitro group, similar to that in the structures of 2-chloro-N-(3-nitro­phen­yl)acetamide (3NPCA) and 2,2,2-trichloro-N-(3-nitro­phen­yl)acetamide (3NPTCA), and the meta-chloro group in 2,2-dichloro-N-(3-chloro­phen­yl)acetamide (3CPDCA). The geometric parameters of 3NPDCA are similar to those of 2,2-dichloro-N-phenyl­acetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the b axis.

Related literature

For related literature, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720 .], 2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl2N2O3

  • Mr = 249.05

  • Orthorhombic, P b c a

  • a = 9.6092 (6) Å

  • b = 10.6487 (7) Å

  • c = 19.868 (1) Å

  • V = 2033.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 299 (2) K

  • 0.60 × 0.52 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector

  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.706, Tmax = 0.865

  • 11267 measured reflections

  • 2072 independent reflections

  • 1614 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.098

  • S = 1.10

  • 2072 reflections

  • 155 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.833 (16) 2.081 (17) 2.907 (2) 171 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the solid state structures of acetanilides (Gowda et al., 2000, 2006, 2007), in the present work, the crystal structure of 2,2-dichloro-N- (3-nitrophenyl)-acetamide (3NPDCA) has been determined to explore the effects of polar substituent groups on the structures of N-aromatic amides. The conformation of the N—H bond in the structure of 3NPDCA (Fig.1) is anti to the meta nitro group, similar to that in the structure of 2-chloro-N-(3-nitrophenyl)-acetamide (3NPCA) (Gowda et al., 2007) and 2,2,2-trichloro-N-(3-nitrophenyl)-acetamide (3NPTCA)(Gowda et al., 2000) and meta chloro group in 2,2-dichloro-N-(3-chlorophenyl)-acetamide (3CPDCA)(Gowda et al., 2006). The geometric parameters in 3NPDCA are similar to those of 2,2-dichloro-N-(phenyl)-acetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. The intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains running along the b axis (Fig. 2).

Related literature top

For related literature, see: Gowda & Weiss (1994); Gowda et al. (2000, 2006, 2007).

Experimental top

The title compound was prepared similar to the literature method (Gowda and Weiss, 1994). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NQR spectra (Gowda and Weiss, 1994). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were located in difference map with C—H = 0.89 (3)–0.96 (3) Å and N—H distance was restrained to 0.86 (2) %A. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bonding as dashed lines.H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x - 1/2, 1/2 - y,1 - z]
2,2-Dichloro-N-(3-nitrophenyl)acetamide top
Crystal data top
C8H6Cl2N2O3F(000) = 1008
Mr = 249.05Dx = 1.627 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4893 reflections
a = 9.6092 (6) Åθ = 2.8–27.8°
b = 10.6487 (7) ŵ = 0.63 mm1
c = 19.868 (1) ÅT = 299 K
V = 2033.0 (2) Å3Prism, yellow
Z = 80.60 × 0.52 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2072 independent reflections
Radiation source: fine-focus sealed tube1614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scans.θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
h = 1211
Tmin = 0.706, Tmax = 0.865k = 1113
11267 measured reflectionsl = 2420
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0385P)2 + 1.4567P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.044
2072 reflectionsΔρmax = 0.35 e Å3
155 parametersΔρmin = 0.36 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0230 (13)
Crystal data top
C8H6Cl2N2O3V = 2033.0 (2) Å3
Mr = 249.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6092 (6) ŵ = 0.63 mm1
b = 10.6487 (7) ÅT = 299 K
c = 19.868 (1) Å0.60 × 0.52 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2072 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
1614 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.865Rint = 0.022
11267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.35 e Å3
2072 reflectionsΔρmin = 0.36 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03253 (19)0.14098 (18)0.60262 (10)0.0344 (4)
C20.1408 (2)0.05696 (19)0.61012 (11)0.0365 (4)
H20.204 (2)0.043 (2)0.5757 (12)0.044*
C30.1543 (2)0.00244 (19)0.67144 (11)0.0380 (5)
C40.0653 (2)0.0166 (2)0.72466 (11)0.0453 (5)
H40.075 (3)0.025 (2)0.7632 (14)0.054*
C50.0418 (2)0.1009 (2)0.71576 (12)0.0490 (6)
H50.103 (3)0.122 (2)0.7521 (14)0.059*
C60.0584 (2)0.1632 (2)0.65542 (11)0.0426 (5)
H60.131 (3)0.220 (2)0.6503 (13)0.051*
C70.1102 (2)0.24984 (19)0.50064 (11)0.0357 (4)
C80.0552 (2)0.3297 (2)0.44287 (11)0.0398 (5)
H80.034 (3)0.352 (2)0.4488 (11)0.048*
N10.01034 (17)0.20745 (17)0.54149 (9)0.0381 (4)
H1N0.0711 (18)0.227 (2)0.5320 (12)0.046*
N20.2700 (2)0.09083 (18)0.67926 (10)0.0491 (5)
O10.23372 (15)0.22854 (16)0.50684 (9)0.0532 (5)
O20.3669 (2)0.08426 (19)0.63930 (10)0.0664 (5)
O30.2672 (2)0.16436 (19)0.72637 (10)0.0759 (6)
Cl10.15452 (6)0.46874 (5)0.43763 (3)0.0529 (2)
Cl20.06927 (8)0.24208 (7)0.36778 (3)0.0661 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (9)0.0403 (10)0.0360 (10)0.0056 (8)0.0003 (8)0.0025 (8)
C20.0334 (10)0.0388 (10)0.0374 (10)0.0034 (8)0.0001 (8)0.0008 (8)
C30.0363 (10)0.0346 (10)0.0430 (11)0.0033 (8)0.0046 (9)0.0017 (8)
C40.0494 (13)0.0483 (12)0.0382 (11)0.0071 (10)0.0014 (10)0.0065 (10)
C50.0460 (13)0.0583 (14)0.0428 (12)0.0043 (11)0.0103 (10)0.0006 (10)
C60.0311 (10)0.0487 (12)0.0479 (12)0.0012 (9)0.0036 (9)0.0014 (10)
C70.0272 (9)0.0389 (10)0.0409 (10)0.0013 (8)0.0009 (8)0.0020 (8)
C80.0307 (10)0.0479 (12)0.0409 (11)0.0006 (9)0.0001 (9)0.0045 (9)
N10.0239 (8)0.0503 (10)0.0401 (9)0.0018 (7)0.0002 (7)0.0076 (8)
N20.0507 (11)0.0446 (10)0.0521 (11)0.0028 (9)0.0091 (10)0.0056 (9)
O10.0258 (7)0.0698 (11)0.0641 (10)0.0050 (7)0.0044 (7)0.0272 (8)
O20.0606 (11)0.0718 (12)0.0668 (12)0.0250 (10)0.0086 (10)0.0109 (10)
O30.0786 (13)0.0713 (12)0.0778 (13)0.0122 (11)0.0056 (11)0.0361 (11)
Cl10.0558 (4)0.0395 (3)0.0635 (4)0.0031 (2)0.0001 (3)0.0064 (2)
Cl20.0740 (5)0.0778 (5)0.0467 (4)0.0200 (4)0.0084 (3)0.0116 (3)
Geometric parameters (Å, º) top
C1—C21.380 (3)C6—H60.93 (3)
C1—C61.386 (3)C7—O11.215 (2)
C1—N11.422 (2)C7—N11.335 (3)
C2—C31.379 (3)C7—C81.523 (3)
C2—H20.93 (2)C8—Cl11.764 (2)
C3—C41.376 (3)C8—Cl21.765 (2)
C3—N21.464 (3)C8—H80.90 (3)
C4—C51.377 (3)N1—H1N0.833 (16)
C4—H40.89 (3)N2—O31.220 (3)
C5—C61.380 (3)N2—O21.226 (3)
C5—H50.96 (3)
C2—C1—C6120.30 (19)C1—C6—H6120.0 (16)
C2—C1—N1121.86 (17)O1—C7—N1125.26 (19)
C6—C1—N1117.83 (18)O1—C7—C8121.32 (19)
C3—C2—C1117.65 (19)N1—C7—C8113.42 (17)
C3—C2—H2120.9 (15)C7—C8—Cl1108.99 (14)
C1—C2—H2121.5 (15)C7—C8—Cl2108.35 (15)
C4—C3—C2123.5 (2)Cl1—C8—Cl2110.62 (12)
C4—C3—N2119.03 (19)C7—C8—H8112.2 (15)
C2—C3—N2117.42 (19)Cl1—C8—H8107.9 (16)
C3—C4—C5117.6 (2)Cl2—C8—H8108.8 (15)
C3—C4—H4121.6 (17)C7—N1—C1125.44 (17)
C5—C4—H4120.8 (17)C7—N1—H1N116.8 (17)
C4—C5—C6120.8 (2)C1—N1—H1N117.5 (17)
C4—C5—H5120.9 (16)O3—N2—O2123.4 (2)
C6—C5—H5118.2 (16)O3—N2—C3118.5 (2)
C5—C6—C1120.2 (2)O2—N2—C3118.10 (18)
C5—C6—H6119.8 (16)
C6—C1—C2—C30.2 (3)N1—C7—C8—Cl1131.85 (17)
N1—C1—C2—C3179.62 (18)O1—C7—C8—Cl271.9 (2)
C1—C2—C3—C40.8 (3)N1—C7—C8—Cl2107.71 (18)
C1—C2—C3—N2179.58 (18)O1—C7—N1—C16.6 (4)
C2—C3—C4—C50.8 (3)C8—C7—N1—C1173.76 (18)
N2—C3—C4—C5179.6 (2)C2—C1—N1—C735.6 (3)
C3—C4—C5—C60.1 (3)C6—C1—N1—C7144.2 (2)
C4—C5—C6—C10.5 (3)C4—C3—N2—O315.6 (3)
C2—C1—C6—C50.4 (3)C2—C3—N2—O3164.0 (2)
N1—C1—C6—C5179.8 (2)C4—C3—N2—O2162.0 (2)
O1—C7—C8—Cl148.5 (3)C2—C3—N2—O218.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.08 (2)2.907 (2)171 (2)
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H6Cl2N2O3
Mr249.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.6092 (6), 10.6487 (7), 19.868 (1)
V3)2033.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.60 × 0.52 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
Absorption correctionMulti-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
Tmin, Tmax0.706, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
11267, 2072, 1614
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.098, 1.10
No. of reflections2072
No. of parameters155
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.833 (16)2.081 (17)2.907 (2)171 (2)
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720 .  CAS Google Scholar
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds