organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-phenyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 December 2007; accepted 31 December 2007; online 9 January 2008)

In the structure of the title compound (NP2MBA), C14H13NO, the conformation of the C—O bond is syn to the ortho-methyl substituent in the benzoyl phenyl ring, while the N—H bond is anti to the ortho-methyl substituent. The structure of NP2MBA closely resembles that of 2-chloro-N-phenyl­benzamide, with similar bond parameters. The dihedral angle between the phenyl and benzoyl rings is 88.05 (5)°. Mol­ecules are linked into a chain through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008). Acta Cryst. E64, o83.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Orthorhombic, P b c a

  • a = 14.404 (1) Å

  • b = 8.6824 (6) Å

  • c = 18.710 (1) Å

  • V = 2339.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.40 × 0.20 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.]) Tmin = 0.970, Tmax = 0.981

  • 11005 measured reflections

  • 2387 independent reflections

  • 1686 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.05

  • 2387 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.878 (17) 2.012 (18) 2.8751 (16) 167.7 (15)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). PLATON. J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of benzanilides, in the present work, the structure of 2-methyl-N-(phenyl)benzamide (NP2MBA) has been determined (Gowda, et al., 2003; 2007; 2008). In the structure of NP2MBA,(Fig. 1), the conformation of the C—O bond is syn to the ortho-methyl substituent in the benzoyl phenyl ring, while the N—H bond is anti to the ortho-methyl substituent. The bond parameters in NP2MBA are similar to those in 2-chloro-N-(phenyl)-benzamide (Gowda, et al.,2003), 2-chloro-N-(2-chlorophenyl)-benzamide (Gowda, et al.,2007), N-(4-methylphenyl)-benzamide (Gowda, et al.,2008) and other benzanilides. The dihedral angle between the phenyl and benzoyl rings in NP2MBA is 88.05 (5)°. The packing diagram of NP2MBA molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chain is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003, 2007, 2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The NH atom was located in difference map with N—H = 0.88 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.95–0.98 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 3/2 - x, 1/2 + y, z]
2-Methyl-N-phenylbenzamide top
Crystal data top
C14H13NOF(000) = 896
Mr = 211.25Dx = 1.199 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3291 reflections
a = 14.404 (1) Åθ = 1.5–26.9°
b = 8.6824 (6) ŵ = 0.08 mm1
c = 18.710 (1) ÅT = 100 K
V = 2339.9 (3) Å3Rod, colourless
Z = 80.40 × 0.20 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2387 independent reflections
Radiation source: fine-focus sealed tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and ϕ scans.θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
h = 1717
Tmin = 0.970, Tmax = 0.981k = 1010
11005 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.6762P]
where P = (Fo2 + 2Fc2)/3
2387 reflections(Δ/σ)max = 0.007
149 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H13NOV = 2339.9 (3) Å3
Mr = 211.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.404 (1) ŵ = 0.08 mm1
b = 8.6824 (6) ÅT = 100 K
c = 18.710 (1) Å0.40 × 0.20 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2387 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
1686 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.981Rint = 0.029
11005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2387 reflectionsΔρmin = 0.21 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69394 (10)0.28490 (16)0.53783 (8)0.0226 (3)
C20.60165 (11)0.32710 (18)0.52773 (9)0.0298 (4)
H20.57400.40290.55750.036*
C30.55046 (12)0.2578 (2)0.47398 (10)0.0395 (5)
H30.48760.28690.46670.047*
C40.59039 (14)0.1463 (2)0.43075 (10)0.0421 (5)
H40.55440.09660.39500.051*
C50.68238 (13)0.1079 (2)0.43987 (9)0.0360 (4)
H50.71020.03340.40940.043*
C60.73475 (11)0.17696 (18)0.49311 (8)0.0276 (4)
H60.79830.15050.49900.033*
C70.80898 (9)0.28653 (16)0.63583 (7)0.0197 (3)
C80.85208 (9)0.38985 (16)0.69023 (8)0.0203 (3)
C90.85849 (9)0.34624 (16)0.76232 (8)0.0231 (3)
C100.90322 (10)0.44704 (19)0.80890 (9)0.0284 (4)
H100.90750.42100.85810.034*
C110.94171 (11)0.58472 (19)0.78533 (9)0.0323 (4)
H110.97350.64980.81800.039*
C120.93373 (11)0.62687 (18)0.71470 (9)0.0310 (4)
H120.95900.72180.69860.037*
C130.88876 (10)0.53029 (16)0.66721 (9)0.0248 (4)
H130.88280.55970.61850.030*
C140.81853 (11)0.19677 (19)0.78942 (8)0.0311 (4)
H14A0.85710.11080.77300.037*
H14B0.75520.18420.77110.037*
H14C0.81720.19810.84180.037*
N10.74373 (8)0.35464 (14)0.59463 (7)0.0220 (3)
H1N0.7283 (11)0.448 (2)0.6078 (9)0.026*
O10.83366 (7)0.15084 (11)0.62885 (6)0.0245 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (8)0.0138 (7)0.0244 (7)0.0039 (6)0.0054 (6)0.0032 (6)
C20.0308 (8)0.0223 (8)0.0362 (9)0.0009 (7)0.0051 (7)0.0040 (7)
C30.0335 (9)0.0373 (10)0.0477 (10)0.0048 (8)0.0176 (8)0.0095 (9)
C40.0563 (12)0.0291 (9)0.0410 (10)0.0117 (9)0.0223 (9)0.0006 (9)
C50.0541 (11)0.0221 (8)0.0316 (9)0.0039 (8)0.0079 (8)0.0018 (8)
C60.0348 (8)0.0204 (8)0.0276 (8)0.0022 (7)0.0039 (7)0.0007 (7)
C70.0189 (7)0.0154 (7)0.0248 (7)0.0018 (5)0.0013 (6)0.0015 (6)
C80.0172 (7)0.0154 (7)0.0284 (8)0.0023 (5)0.0008 (6)0.0020 (6)
C90.0183 (7)0.0217 (7)0.0294 (8)0.0040 (6)0.0005 (6)0.0019 (7)
C100.0249 (8)0.0316 (9)0.0287 (8)0.0065 (7)0.0055 (7)0.0063 (8)
C110.0246 (8)0.0273 (8)0.0452 (10)0.0000 (7)0.0082 (7)0.0151 (8)
C120.0263 (8)0.0190 (8)0.0478 (10)0.0038 (6)0.0030 (7)0.0031 (8)
C130.0235 (7)0.0176 (7)0.0333 (8)0.0001 (6)0.0013 (6)0.0009 (7)
C140.0336 (9)0.0299 (9)0.0298 (8)0.0022 (7)0.0004 (7)0.0052 (8)
N10.0261 (6)0.0126 (6)0.0273 (7)0.0019 (5)0.0033 (6)0.0017 (6)
O10.0274 (5)0.0124 (5)0.0336 (6)0.0014 (4)0.0033 (5)0.0018 (5)
Geometric parameters (Å, º) top
C1—C61.387 (2)C8—C131.397 (2)
C1—C21.392 (2)C8—C91.404 (2)
C1—N11.4180 (18)C9—C101.393 (2)
C2—C31.385 (2)C9—C141.507 (2)
C2—H20.9500C10—C111.390 (2)
C3—C41.387 (3)C10—H100.9500
C3—H30.9500C11—C121.376 (2)
C4—C51.377 (3)C11—H110.9500
C4—H40.9500C12—C131.383 (2)
C5—C61.386 (2)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—H60.9500C14—H14A0.9800
C7—O11.2375 (17)C14—H14B0.9800
C7—N11.3516 (18)C14—H14C0.9800
C7—C81.492 (2)N1—H1N0.878 (17)
C6—C1—C2120.05 (14)C10—C9—C8117.51 (14)
C6—C1—N1121.76 (13)C10—C9—C14120.47 (14)
C2—C1—N1118.19 (13)C8—C9—C14122.01 (13)
C3—C2—C1119.53 (16)C11—C10—C9121.78 (15)
C3—C2—H2120.2C11—C10—H10119.1
C1—C2—H2120.2C9—C10—H10119.1
C2—C3—C4120.41 (16)C12—C11—C10120.01 (15)
C2—C3—H3119.8C12—C11—H11120.0
C4—C3—H3119.8C10—C11—H11120.0
C5—C4—C3119.73 (16)C11—C12—C13119.66 (15)
C5—C4—H4120.1C11—C12—H12120.2
C3—C4—H4120.1C13—C12—H12120.2
C4—C5—C6120.53 (17)C12—C13—C8120.56 (15)
C4—C5—H5119.7C12—C13—H13119.7
C6—C5—H5119.7C8—C13—H13119.7
C5—C6—C1119.69 (15)C9—C14—H14A109.5
C5—C6—H6120.2C9—C14—H14B109.5
C1—C6—H6120.2H14A—C14—H14B109.5
O1—C7—N1123.79 (13)C9—C14—H14C109.5
O1—C7—C8121.65 (12)H14A—C14—H14C109.5
N1—C7—C8114.53 (12)H14B—C14—H14C109.5
C13—C8—C9120.44 (14)C7—N1—C1126.32 (12)
C13—C8—C7118.16 (13)C7—N1—H1N114.9 (11)
C9—C8—C7121.37 (13)C1—N1—H1N118.5 (11)
C6—C1—C2—C31.6 (2)C13—C8—C9—C14179.07 (13)
N1—C1—C2—C3178.20 (14)C7—C8—C9—C142.9 (2)
C1—C2—C3—C40.5 (3)C8—C9—C10—C111.1 (2)
C2—C3—C4—C52.1 (3)C14—C9—C10—C11179.21 (14)
C3—C4—C5—C61.7 (3)C9—C10—C11—C122.0 (2)
C4—C5—C6—C10.4 (2)C10—C11—C12—C131.2 (2)
C2—C1—C6—C52.0 (2)C11—C12—C13—C80.5 (2)
N1—C1—C6—C5177.73 (14)C9—C8—C13—C121.5 (2)
O1—C7—C8—C13126.10 (15)C7—C8—C13—C12176.65 (13)
N1—C7—C8—C1352.29 (17)O1—C7—N1—C10.2 (2)
O1—C7—C8—C951.99 (19)C8—C7—N1—C1178.11 (13)
N1—C7—C8—C9129.62 (14)C6—C1—N1—C735.5 (2)
C13—C8—C9—C100.7 (2)C2—C1—N1—C7144.32 (15)
C7—C8—C9—C10177.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.878 (17)2.012 (18)2.8751 (16)167.7 (15)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.404 (1), 8.6824 (6), 18.710 (1)
V3)2339.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
Absorption correctionMulti-scan
(SCALE3 ABSPACK; Oxford Diffraction, 2007)
Tmin, Tmax0.970, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11005, 2387, 1686
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.05
No. of reflections2387
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.878 (17)2.012 (18)2.8751 (16)167.7 (15)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008). Acta Cryst. E64, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Version 1.171.32.5. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). PLATON. J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds