organic compounds
N-(3-Chlorophenyl)benzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The conformation of the N—H bond in the structure of the title compound (N3CPBA), C13H10ClNO, is anti to the meta chloro substituent in the aniline benzene ring, similar to that observed with respect to the ortho chloro substituent in N-(2-chlorophenyl)benzamide (N2CPBA) and meta chloro substituent in N-(3,4-dichlorophenyl)benzamide (N34DCPBA), but in contrast to the syn conformation observed with respect to both the ortho and the meta chloro substituents in N-(2,3-dichlorophenyl)benzamide (N23DCPBA). The bond parameters in N3CPBA are similar to those in N-phenylbenzamide, N2CPBA, N23DCPBA, N34DCPBA and other benzanilides. The amide group –NHCO– makes a dihedral angle of 18.2 (2)° with the benzoyl ring, while the dihedral angle between the two benzene rings is 61.0 (1)°. The molecules are linked into chains along the b axis by N—H⋯O hydrogen bonds.
Related literature
For related literature, see: Gowda et al. (2003); Gowda, Sowmya, Kožíšek et al. (2007); Gowda, Sowmya, Tokarčík et al. (2007).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808001311/dn2311sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001311/dn2311Isup2.hkl
The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C—H bond distance 0.93 Å. H(N) atom was visible in the difference map. In
the N—H distance was restrained to 0.86 (4) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Diamond (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2003) and WinGX (Farrugia, 1999).C13H10ClNO | F(000) = 960 |
Mr = 231.67 | Dx = 1.337 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 14003 reflections |
a = 9.3585 (2) Å | θ = 3.0–29.5° |
b = 9.7851 (2) Å | µ = 0.31 mm−1 |
c = 25.1419 (6) Å | T = 295 K |
V = 2302.34 (9) Å3 | Prism, colourless |
Z = 8 | 0.41 × 0.13 × 0.06 mm |
Oxford Diffraction Xcalibur diffractometer | 2252 independent reflections |
Graphite monochromator | 1639 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.047 |
ϕ scans, and ω scans with κ offsets | θmax = 26.0°, θmin = 4.7° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995). | h = −11→11 |
Tmin = 0.915, Tmax = 0.984 | k = −12→12 |
53566 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2808P] where P = (Fo2 + 2Fc2)/3 |
2252 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.19 e Å−3 |
1 restraint | Δρmin = −0.25 e Å−3 |
C13H10ClNO | V = 2302.34 (9) Å3 |
Mr = 231.67 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.3585 (2) Å | µ = 0.31 mm−1 |
b = 9.7851 (2) Å | T = 295 K |
c = 25.1419 (6) Å | 0.41 × 0.13 × 0.06 mm |
Oxford Diffraction Xcalibur diffractometer | 2252 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995). | 1639 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 0.984 | Rint = 0.047 |
53566 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 1 restraint |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.19 e Å−3 |
2252 reflections | Δρmin = −0.25 e Å−3 |
148 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.27214 (14) | 0.48267 (13) | 0.12047 (5) | 0.0462 (4) | |
H1N | 0.2650 (19) | 0.4004 (17) | 0.1287 (6) | 0.055* | |
O1 | 0.19225 (12) | 0.69327 (10) | 0.14128 (5) | 0.0565 (3) | |
Cl1 | 0.54083 (6) | 0.81350 (6) | −0.00120 (2) | 0.0875 (2) | |
C1 | 0.17675 (16) | 0.56906 (15) | 0.14234 (6) | 0.0405 (4) | |
C2 | 0.05098 (15) | 0.50735 (14) | 0.16988 (6) | 0.0392 (4) | |
C3 | −0.02405 (19) | 0.58822 (17) | 0.20536 (7) | 0.0546 (5) | |
H3 | 0.0038 | 0.6784 | 0.2108 | 0.065* | |
C4 | −0.1391 (2) | 0.53666 (19) | 0.23252 (8) | 0.0671 (5) | |
H4 | −0.1877 | 0.5916 | 0.2567 | 0.081* | |
C5 | −0.1830 (2) | 0.4050 (2) | 0.22432 (8) | 0.0684 (6) | |
H5 | −0.2613 | 0.3706 | 0.2427 | 0.082* | |
C6 | −0.1111 (2) | 0.32411 (18) | 0.18890 (8) | 0.0654 (5) | |
H6 | −0.1414 | 0.2349 | 0.1829 | 0.079* | |
C7 | 0.00613 (18) | 0.37454 (17) | 0.16203 (7) | 0.0519 (4) | |
H7 | 0.0553 | 0.3185 | 0.1384 | 0.062* | |
C8 | 0.40219 (17) | 0.52388 (15) | 0.09631 (6) | 0.0444 (4) | |
C9 | 0.40661 (17) | 0.63258 (16) | 0.06157 (6) | 0.0471 (4) | |
H9 | 0.3235 | 0.6796 | 0.0528 | 0.056* | |
C10 | 0.53533 (19) | 0.67062 (18) | 0.04005 (7) | 0.0544 (5) | |
C11 | 0.6590 (2) | 0.6017 (2) | 0.05099 (8) | 0.0719 (6) | |
H11 | 0.7453 | 0.6288 | 0.0359 | 0.086* | |
C12 | 0.6527 (2) | 0.4918 (2) | 0.08464 (10) | 0.0808 (6) | |
H12 | 0.7355 | 0.4428 | 0.092 | 0.097* | |
C13 | 0.5255 (2) | 0.4528 (2) | 0.10771 (8) | 0.0657 (5) | |
H13 | 0.523 | 0.3788 | 0.1309 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0440 (8) | 0.0309 (6) | 0.0636 (9) | 0.0007 (6) | 0.0069 (7) | 0.0025 (6) |
O1 | 0.0570 (7) | 0.0299 (6) | 0.0827 (8) | −0.0007 (5) | 0.0119 (6) | 0.0004 (5) |
Cl1 | 0.0668 (4) | 0.0990 (5) | 0.0968 (4) | −0.0134 (3) | 0.0102 (3) | 0.0423 (3) |
C1 | 0.0405 (9) | 0.0349 (8) | 0.0462 (9) | 0.0023 (7) | −0.0054 (7) | 0.0006 (7) |
C2 | 0.0387 (8) | 0.0353 (8) | 0.0437 (8) | 0.0030 (6) | −0.0031 (7) | 0.0027 (6) |
C3 | 0.0621 (11) | 0.0407 (9) | 0.0609 (10) | 0.0035 (8) | 0.0091 (9) | −0.0026 (8) |
C4 | 0.0711 (13) | 0.0596 (11) | 0.0707 (12) | 0.0091 (10) | 0.0291 (11) | 0.0013 (9) |
C5 | 0.0605 (12) | 0.0658 (12) | 0.0789 (13) | −0.0021 (10) | 0.0232 (11) | 0.0136 (10) |
C6 | 0.0615 (12) | 0.0485 (10) | 0.0862 (14) | −0.0122 (9) | 0.0123 (11) | 0.0001 (9) |
C7 | 0.0495 (10) | 0.0433 (9) | 0.0628 (11) | −0.0030 (8) | 0.0084 (8) | −0.0081 (8) |
C8 | 0.0418 (9) | 0.0393 (8) | 0.0521 (9) | 0.0005 (7) | 0.0040 (7) | −0.0044 (7) |
C9 | 0.0392 (9) | 0.0500 (9) | 0.0520 (9) | −0.0007 (8) | −0.0016 (8) | −0.0003 (8) |
C10 | 0.0489 (11) | 0.0621 (11) | 0.0521 (10) | −0.0090 (8) | 0.0025 (8) | 0.0038 (8) |
C11 | 0.0435 (11) | 0.0900 (14) | 0.0824 (14) | −0.0024 (10) | 0.0133 (10) | 0.0107 (12) |
C12 | 0.0461 (12) | 0.0917 (15) | 0.1046 (16) | 0.0207 (11) | 0.0101 (11) | 0.0216 (13) |
C13 | 0.0528 (12) | 0.0615 (11) | 0.0827 (13) | 0.0112 (9) | 0.0081 (10) | 0.0170 (10) |
N1—C1 | 1.3468 (19) | C6—C7 | 1.380 (2) |
N1—C8 | 1.419 (2) | C6—H6 | 0.93 |
N1—H1N | 0.834 (16) | C7—H7 | 0.93 |
O1—C1 | 1.2244 (17) | C8—C9 | 1.377 (2) |
Cl1—C10 | 1.7415 (18) | C8—C13 | 1.378 (2) |
C1—C2 | 1.493 (2) | C9—C10 | 1.372 (2) |
C2—C7 | 1.380 (2) | C9—H9 | 0.93 |
C2—C3 | 1.384 (2) | C10—C11 | 1.368 (3) |
C3—C4 | 1.371 (2) | C11—C12 | 1.369 (3) |
C3—H3 | 0.93 | C11—H11 | 0.93 |
C4—C5 | 1.368 (3) | C12—C13 | 1.378 (3) |
C4—H4 | 0.93 | C12—H12 | 0.93 |
C5—C6 | 1.368 (3) | C13—H13 | 0.93 |
C5—H5 | 0.93 | ||
C1—N1—C8 | 124.41 (13) | C2—C7—C6 | 120.57 (16) |
C1—N1—H1N | 116.9 (12) | C2—C7—H7 | 119.7 |
C8—N1—H1N | 116.7 (12) | C6—C7—H7 | 119.7 |
O1—C1—N1 | 122.38 (14) | C9—C8—C13 | 119.78 (15) |
O1—C1—C2 | 120.33 (14) | C9—C8—N1 | 121.12 (14) |
N1—C1—C2 | 117.26 (13) | C13—C8—N1 | 119.10 (14) |
C7—C2—C3 | 118.46 (15) | C10—C9—C8 | 119.09 (15) |
C7—C2—C1 | 123.66 (14) | C10—C9—H9 | 120.5 |
C3—C2—C1 | 117.88 (13) | C8—C9—H9 | 120.5 |
C4—C3—C2 | 120.60 (16) | C11—C10—C9 | 122.00 (17) |
C4—C3—H3 | 119.7 | C11—C10—Cl1 | 119.38 (14) |
C2—C3—H3 | 119.7 | C9—C10—Cl1 | 118.60 (14) |
C5—C4—C3 | 120.47 (17) | C10—C11—C12 | 118.36 (18) |
C5—C4—H4 | 119.8 | C10—C11—H11 | 120.8 |
C3—C4—H4 | 119.8 | C12—C11—H11 | 120.8 |
C4—C5—C6 | 119.71 (17) | C11—C12—C13 | 120.98 (19) |
C4—C5—H5 | 120.1 | C11—C12—H12 | 119.5 |
C6—C5—H5 | 120.1 | C13—C12—H12 | 119.5 |
C5—C6—C7 | 120.18 (17) | C8—C13—C12 | 119.76 (18) |
C5—C6—H6 | 119.9 | C8—C13—H13 | 120.1 |
C7—C6—H6 | 119.9 | C12—C13—H13 | 120.1 |
C8—N1—C1—O1 | 3.0 (2) | C5—C6—C7—C2 | −1.0 (3) |
C8—N1—C1—C2 | −175.25 (14) | C1—N1—C8—C9 | −45.2 (2) |
O1—C1—C2—C7 | 163.26 (16) | C1—N1—C8—C13 | 135.30 (17) |
N1—C1—C2—C7 | −18.5 (2) | C13—C8—C9—C10 | −1.9 (2) |
O1—C1—C2—C3 | −17.0 (2) | N1—C8—C9—C10 | 178.61 (14) |
N1—C1—C2—C3 | 161.30 (14) | C8—C9—C10—C11 | 1.7 (3) |
C7—C2—C3—C4 | 0.8 (3) | C8—C9—C10—Cl1 | −176.82 (12) |
C1—C2—C3—C4 | −178.95 (15) | C9—C10—C11—C12 | −0.2 (3) |
C2—C3—C4—C5 | −1.1 (3) | Cl1—C10—C11—C12 | 178.29 (17) |
C3—C4—C5—C6 | 0.3 (3) | C10—C11—C12—C13 | −1.1 (3) |
C4—C5—C6—C7 | 0.8 (3) | C9—C8—C13—C12 | 0.6 (3) |
C3—C2—C7—C6 | 0.2 (3) | N1—C8—C13—C12 | −179.87 (18) |
C1—C2—C7—C6 | 179.94 (16) | C11—C12—C13—C8 | 0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (2) | 2.09 (2) | 2.8989 (17) | 164 (2) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C13H10ClNO |
Mr | 231.67 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 9.3585 (2), 9.7851 (2), 25.1419 (6) |
V (Å3) | 2302.34 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.41 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995). |
Tmin, Tmax | 0.915, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 53566, 2252, 1639 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.101, 1.08 |
No. of reflections | 2252 |
No. of parameters | 148 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Diamond (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.834 (16) | 2.089 (17) | 2.8989 (17) | 163.5 (17) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3326. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of N-(3-chlorophenyl)-benzamide (N3CPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003; Gowda, Sowmya, Kožíšek et al., 2007; Gowda, Sowmya, Tokarčík et al., 2007). The conformation of the N—H bond in the structure of N3CPBA(Fig.1) is anti to the meta chloro substituent in the aniline phenyl ring, similar to that observed with respect to the ortho-chloro substituent in N-(2-chlorophenyl)-benzamide (N2CPBA)(Gowda, Sowmya, Kožíšek et al., 2007) and meta-chloro substituent in N-(3,4-dichlorophenyl)-benzamide (N34DCPBA) (Gowda, Sowmya, Tokarčík et al., 2007), but in contrast to the syn conformation observed with respect to both the ortho & meta-Chloro substituents in N-(2,3-dichlorophenyl)- benzamide (N23DCPBA)(Gowda, Sowmya, Tokarčík et al., 2007). The bond parameters in N3CPBA are similar to those in N-(phenyl)-benzamide, N2CPBA, N23DCPBA, N34DCPBA and other benzanilides. The amide group –NHCO– has the dihedral angle of 18.2 (2)° with the benzoyl ring, while the dihedral angle between the two benzene rings (benzoyl and aniline) is 61.0 (1)°. One-dimensional chains of the title compound along the base vector [0 1 0] formed by hydrogen bonds N1–H1N···O1 (Table 1) as viewed down the a axis is shown in Fig.2.