organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 January 2008; accepted 13 January 2008; online 16 January 2008)

The conformation of the N—H bond in the structure of the title compound (N3CPBA), C13H10ClNO, is anti to the meta chloro substituent in the aniline benzene ring, similar to that observed with respect to the ortho chloro substituent in N-(2-chloro­phen­yl)benzamide (N2CPBA) and meta chloro substituent in N-(3,4-dichloro­phen­yl)benzamide (N34DCPBA), but in contrast to the syn conformation observed with respect to both the ortho and the meta chloro substituents in N-(2,3-dichloro­phen­yl)benzamide (N23DCPBA). The bond parameters in N3CPBA are similar to those in N-phenyl­benzamide, N2CPBA, N23DCPBA, N34DCPBA and other benzanilides. The amide group –NHCO– makes a dihedral angle of 18.2 (2)° with the benzoyl ring, while the dihedral angle between the two benzene rings is 61.0 (1)°. The mol­ecules are linked into chains along the b axis by N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]); Gowda, Sowmya, Kožíšek et al. (2007[Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.]); Gowda, Sowmya, Tokarčík et al. (2007[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3326.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO

  • Mr = 231.67

  • Orthorhombic, P b c a

  • a = 9.3585 (2) Å

  • b = 9.7851 (2) Å

  • c = 25.1419 (6) Å

  • V = 2302.34 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 (2) K

  • 0.41 × 0.13 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]). Tmin = 0.915, Tmax = 0.984

  • 53566 measured reflections

  • 2252 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.08

  • 2252 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.834 (16) 2.089 (17) 2.8989 (17) 163.5 (17)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(3-chlorophenyl)-benzamide (N3CPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003; Gowda, Sowmya, Kožíšek et al., 2007; Gowda, Sowmya, Tokarčík et al., 2007). The conformation of the N—H bond in the structure of N3CPBA(Fig.1) is anti to the meta chloro substituent in the aniline phenyl ring, similar to that observed with respect to the ortho-chloro substituent in N-(2-chlorophenyl)-benzamide (N2CPBA)(Gowda, Sowmya, Kožíšek et al., 2007) and meta-chloro substituent in N-(3,4-dichlorophenyl)-benzamide (N34DCPBA) (Gowda, Sowmya, Tokarčík et al., 2007), but in contrast to the syn conformation observed with respect to both the ortho & meta-Chloro substituents in N-(2,3-dichlorophenyl)- benzamide (N23DCPBA)(Gowda, Sowmya, Tokarčík et al., 2007). The bond parameters in N3CPBA are similar to those in N-(phenyl)-benzamide, N2CPBA, N23DCPBA, N34DCPBA and other benzanilides. The amide group –NHCO– has the dihedral angle of 18.2 (2)° with the benzoyl ring, while the dihedral angle between the two benzene rings (benzoyl and aniline) is 61.0 (1)°. One-dimensional chains of the title compound along the base vector [0 1 0] formed by hydrogen bonds N1–H1N···O1 (Table 1) as viewed down the a axis is shown in Fig.2.

Related literature top

For related literature, see: Gowda et al. (2003); Gowda, Sowmya, Kožíšek et al. (2007); Gowda, Sowmya, Tokarčík et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C—H bond distance 0.93 Å. H(N) atom was visible in the difference map. In refinement the N—H distance was restrained to 0.86 (4) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Diamond (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed down the axis a. One-dimensional chains along the base vector [0 1 0] are formed by hydrogen bonds N1–H1N···O1(i). H atoms not involved in hydrogen bonding are omitted. [Symmetry code: (i) -x + 1/2, y - 1/2, z]
N-(3-Chlorophenyl)benzamide top
Crystal data top
C13H10ClNOF(000) = 960
Mr = 231.67Dx = 1.337 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 14003 reflections
a = 9.3585 (2) Åθ = 3.0–29.5°
b = 9.7851 (2) ŵ = 0.31 mm1
c = 25.1419 (6) ÅT = 295 K
V = 2302.34 (9) Å3Prism, colourless
Z = 80.41 × 0.13 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2252 independent reflections
Graphite monochromator1639 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.047
ϕ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 4.7°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).
h = 1111
Tmin = 0.915, Tmax = 0.984k = 1212
53566 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2808P]
where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C13H10ClNOV = 2302.34 (9) Å3
Mr = 231.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3585 (2) ŵ = 0.31 mm1
b = 9.7851 (2) ÅT = 295 K
c = 25.1419 (6) Å0.41 × 0.13 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2252 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).
1639 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.984Rint = 0.047
53566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
2252 reflectionsΔρmin = 0.25 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27214 (14)0.48267 (13)0.12047 (5)0.0462 (4)
H1N0.2650 (19)0.4004 (17)0.1287 (6)0.055*
O10.19225 (12)0.69327 (10)0.14128 (5)0.0565 (3)
Cl10.54083 (6)0.81350 (6)0.00120 (2)0.0875 (2)
C10.17675 (16)0.56906 (15)0.14234 (6)0.0405 (4)
C20.05098 (15)0.50735 (14)0.16988 (6)0.0392 (4)
C30.02405 (19)0.58822 (17)0.20536 (7)0.0546 (5)
H30.00380.67840.21080.065*
C40.1391 (2)0.53666 (19)0.23252 (8)0.0671 (5)
H40.18770.59160.25670.081*
C50.1830 (2)0.4050 (2)0.22432 (8)0.0684 (6)
H50.26130.37060.24270.082*
C60.1111 (2)0.32411 (18)0.18890 (8)0.0654 (5)
H60.14140.23490.18290.079*
C70.00613 (18)0.37454 (17)0.16203 (7)0.0519 (4)
H70.05530.31850.13840.062*
C80.40219 (17)0.52388 (15)0.09631 (6)0.0444 (4)
C90.40661 (17)0.63258 (16)0.06157 (6)0.0471 (4)
H90.32350.67960.05280.056*
C100.53533 (19)0.67062 (18)0.04005 (7)0.0544 (5)
C110.6590 (2)0.6017 (2)0.05099 (8)0.0719 (6)
H110.74530.62880.03590.086*
C120.6527 (2)0.4918 (2)0.08464 (10)0.0808 (6)
H120.73550.44280.0920.097*
C130.5255 (2)0.4528 (2)0.10771 (8)0.0657 (5)
H130.5230.37880.13090.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0440 (8)0.0309 (6)0.0636 (9)0.0007 (6)0.0069 (7)0.0025 (6)
O10.0570 (7)0.0299 (6)0.0827 (8)0.0007 (5)0.0119 (6)0.0004 (5)
Cl10.0668 (4)0.0990 (5)0.0968 (4)0.0134 (3)0.0102 (3)0.0423 (3)
C10.0405 (9)0.0349 (8)0.0462 (9)0.0023 (7)0.0054 (7)0.0006 (7)
C20.0387 (8)0.0353 (8)0.0437 (8)0.0030 (6)0.0031 (7)0.0027 (6)
C30.0621 (11)0.0407 (9)0.0609 (10)0.0035 (8)0.0091 (9)0.0026 (8)
C40.0711 (13)0.0596 (11)0.0707 (12)0.0091 (10)0.0291 (11)0.0013 (9)
C50.0605 (12)0.0658 (12)0.0789 (13)0.0021 (10)0.0232 (11)0.0136 (10)
C60.0615 (12)0.0485 (10)0.0862 (14)0.0122 (9)0.0123 (11)0.0001 (9)
C70.0495 (10)0.0433 (9)0.0628 (11)0.0030 (8)0.0084 (8)0.0081 (8)
C80.0418 (9)0.0393 (8)0.0521 (9)0.0005 (7)0.0040 (7)0.0044 (7)
C90.0392 (9)0.0500 (9)0.0520 (9)0.0007 (8)0.0016 (8)0.0003 (8)
C100.0489 (11)0.0621 (11)0.0521 (10)0.0090 (8)0.0025 (8)0.0038 (8)
C110.0435 (11)0.0900 (14)0.0824 (14)0.0024 (10)0.0133 (10)0.0107 (12)
C120.0461 (12)0.0917 (15)0.1046 (16)0.0207 (11)0.0101 (11)0.0216 (13)
C130.0528 (12)0.0615 (11)0.0827 (13)0.0112 (9)0.0081 (10)0.0170 (10)
Geometric parameters (Å, º) top
N1—C11.3468 (19)C6—C71.380 (2)
N1—C81.419 (2)C6—H60.93
N1—H1N0.834 (16)C7—H70.93
O1—C11.2244 (17)C8—C91.377 (2)
Cl1—C101.7415 (18)C8—C131.378 (2)
C1—C21.493 (2)C9—C101.372 (2)
C2—C71.380 (2)C9—H90.93
C2—C31.384 (2)C10—C111.368 (3)
C3—C41.371 (2)C11—C121.369 (3)
C3—H30.93C11—H110.93
C4—C51.368 (3)C12—C131.378 (3)
C4—H40.93C12—H120.93
C5—C61.368 (3)C13—H130.93
C5—H50.93
C1—N1—C8124.41 (13)C2—C7—C6120.57 (16)
C1—N1—H1N116.9 (12)C2—C7—H7119.7
C8—N1—H1N116.7 (12)C6—C7—H7119.7
O1—C1—N1122.38 (14)C9—C8—C13119.78 (15)
O1—C1—C2120.33 (14)C9—C8—N1121.12 (14)
N1—C1—C2117.26 (13)C13—C8—N1119.10 (14)
C7—C2—C3118.46 (15)C10—C9—C8119.09 (15)
C7—C2—C1123.66 (14)C10—C9—H9120.5
C3—C2—C1117.88 (13)C8—C9—H9120.5
C4—C3—C2120.60 (16)C11—C10—C9122.00 (17)
C4—C3—H3119.7C11—C10—Cl1119.38 (14)
C2—C3—H3119.7C9—C10—Cl1118.60 (14)
C5—C4—C3120.47 (17)C10—C11—C12118.36 (18)
C5—C4—H4119.8C10—C11—H11120.8
C3—C4—H4119.8C12—C11—H11120.8
C4—C5—C6119.71 (17)C11—C12—C13120.98 (19)
C4—C5—H5120.1C11—C12—H12119.5
C6—C5—H5120.1C13—C12—H12119.5
C5—C6—C7120.18 (17)C8—C13—C12119.76 (18)
C5—C6—H6119.9C8—C13—H13120.1
C7—C6—H6119.9C12—C13—H13120.1
C8—N1—C1—O13.0 (2)C5—C6—C7—C21.0 (3)
C8—N1—C1—C2175.25 (14)C1—N1—C8—C945.2 (2)
O1—C1—C2—C7163.26 (16)C1—N1—C8—C13135.30 (17)
N1—C1—C2—C718.5 (2)C13—C8—C9—C101.9 (2)
O1—C1—C2—C317.0 (2)N1—C8—C9—C10178.61 (14)
N1—C1—C2—C3161.30 (14)C8—C9—C10—C111.7 (3)
C7—C2—C3—C40.8 (3)C8—C9—C10—Cl1176.82 (12)
C1—C2—C3—C4178.95 (15)C9—C10—C11—C120.2 (3)
C2—C3—C4—C51.1 (3)Cl1—C10—C11—C12178.29 (17)
C3—C4—C5—C60.3 (3)C10—C11—C12—C131.1 (3)
C4—C5—C6—C70.8 (3)C9—C8—C13—C120.6 (3)
C3—C2—C7—C60.2 (3)N1—C8—C13—C12179.87 (18)
C1—C2—C7—C6179.94 (16)C11—C12—C13—C80.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.09 (2)2.8989 (17)164 (2)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H10ClNO
Mr231.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)9.3585 (2), 9.7851 (2), 25.1419 (6)
V3)2302.34 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.41 × 0.13 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).
Tmin, Tmax0.915, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
53566, 2252, 1639
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.08
No. of reflections2252
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Diamond (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.834 (16)2.089 (17)2.8989 (17)163.5 (17)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds