metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m427-m428

Bis[μ-1,4-bis­­(4,5-di­hydro-1H-imidazol-2-yl)benzene-κ2N3:N3′]silver(I) dinitrate dihydrate

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: yuqiang_ding@yahoo.com

(Received 12 January 2008; accepted 16 January 2008; online 30 January 2008)

The reaction of 1,4-bis­(4,5-dihydro-1H-imidazol-2-yl)benzene (bib) with silver(I) nitrate in a 1:1 molar ratio generates the metallacyclic title complex, [Ag2(C12H14N4)2](NO3)2·2H2O, in which the bib ligand displays a cis configuration. Each bib ligand acts as a bidentate bridging ligand connecting a pair of AgI ions to form a [2 + 2] metallamacrocycle in which the Ag⋯Ag distance is 6.77 (2) Å. Each AgI ion has weak contacts (2.91 Å) with the nitrate anion. The uncoordinated water mol­ecules make hydrogen bonds with nitrate O atoms, forming chains. The H atoms attached to the uncoordinated nitro­gen inter­act with these chains through N—H⋯O hydrogen bonds, forming layers parallel to the ([\overline{1}]11) plane.

Related literature

For related literature, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]); Ren, Ye, He et al. (2004[Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 220-206.]); Ren, Ye, Zhu et al. (2004[Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443-450.]); Ren et al. (2007[Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741-3747.]); Toh et al. (2005[Toh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. Int. Ed. 44, 2237-2241.]); Zhang et al. (2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258-1260.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C12H14N4)2](NO3)2·2H2O

  • Mr = 804.34

  • Triclinic, [P \overline 1]

  • a = 10.3562 (19) Å

  • b = 11.053 (2) Å

  • c = 13.282 (2) Å

  • α = 97.496 (3)°

  • β = 95.354 (3)°

  • γ = 101.613 (3)°

  • V = 1465.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 273 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker, (1998). SMART, SAINT and SADABS. Bruker AXS Inc., ADISON. Wisconsin, USA.]) Tmin = 0.678, Tmax = 0.767

  • 7650 measured reflections

  • 5316 independent reflections

  • 3797 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 0.92

  • 5316 reflections

  • 397 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 2.17 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 2.12 2.980 (6) 173
N1—H1⋯O5 0.86 2.46 3.029 (6) 124
N3—H3⋯O1 0.86 2.13 2.915 (7) 151
N3—H3⋯O2 0.86 2.64 3.143 (6) 119
N6—H6⋯O1W 0.86 2.13 2.912 (6) 150
N8—H8⋯O4i 0.86 2.33 3.073 (7) 145
O1W—H11W⋯O2ii 0.85 2.12 2.852 (6) 144
O1W—H12W⋯O5i 0.85 2.04 2.888 (7) 178
O2W—H21W⋯O1 0.85 2.22 3.021 (7) 157
O2W—H22W⋯O6 0.85 2.21 2.973 (7) 150
Symmetry codes: (i) x+1, y, z+1; (ii) x, y-1, z+1.

Data collection: SMART (Bruker, 1998[Bruker, (1998). SMART, SAINT and SADABS. Bruker AXS Inc., ADISON. Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker, (1998). SMART, SAINT and SADABS. Bruker AXS Inc., ADISON. Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Controlled assembly and crystallization of supramolecular isomers and polymorphs are an interesting challenges in the field of supramolecular chemistry and crystal engineering (Moulton et al., 2001). One of the simplest example of such supramolecular isomerism may be a discrete molecule forming a one-dimensional polymer assembled in a 1/1 metal-ligand stoichiometry(Toh et al., 2005; Zhang et al., 2005). In our previous work, we have designed and synthesized a number of such metal complexes, including silver(I) complexes with a V-shaped ligand 1,3-bis(4,5-dihydro-1H-imidazol-2-yl)benzene (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007) which has four potential coordinated sites with differently binding abilities. To gain more insight into the structural variation of this type of silver(I) complexes, we became interested in a new imidazole-like ligand 1,4-bis(4,5-dihydro-1H-imidazol-2-yl)benzene (bib). Here, we present the syntheses and structural characterizations of a new [2:2] metallocyclic silver(I) complexes, namely [Ag2(bib)2](NO3)2.2H2O.

The crystal structure of the title complex consists of dimeric [Ag2(bib)2]2+ cations, as well as NO3- counter anion and lattice water in the solid state. As shown in Fig. 1, each pair of AgI ions in the title complex are coordinated by two nitrogen atoms from two different bib ligands resulting in a [2:2] 18-membered metallocycle with a Ag(1)···Ag(2) distance of 6.77 Å. The two bib ligands, acting in a cis, cis mode, are organized in a head-to-tail fashion and joined together by two silver ions through coordination bonds to give the metallocycles. All the Ag—N bond distances are from 2.078 (4) to 2.104 (4) Å, and agree with values found in the literature(Ren et al., 2004a, 2004b, 2007). The bond angles around the AgI ion are 164.4 (2) /% and 166.5 (2) /%.

The lattice water molecules form hydrogen bonds with nitrate oxygen atoms yielding chains. The H atoms attached to the uncoordinated nitrogen interact through N—H···O hydrogen bonds with these chains forming layers parallel to the (-1 1 1) plane. (Table 1, Fig. 2).

Related literature top

For related literature, see: Moulton & Zaworotko (2001); Nardelli (1999); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004); Ren et al. (2007); Toh et al. (2005); Zhang et al. (2005).

Experimental top

All the reagents and solvents employed were commercially available and used as received without further purification.

Synthesis of Ligand bib. 1,4-Benzenedicarboxylic acid (2.31 g, 13.9 mmol), ethylenediamine (3.70 ml, 50 mmol), ethylenediamine dihydrochloride (6.64 g, 50 mmol) and toluene-p-sulfonic acid (0.208 g, 1.09 mmol) were added to the solvent of ethylene glycol (20 ml), and the mixture solution was refluxed for 3 h. About half of the ehylene glycol solvent was then slowly removed by distillation. The residue was dissolved in a mixture of water (40 ml) and concentrated HCl (11M, 3 ml). The addition of 50% aqueous NaOH gave a yellow precipitate that was purified by recrystallization. The ligand bib was obtained in 89% based on 1,4-benzenedicarboxylic acid (ca 2.68 g). Anal. calc. for C12H14N4: C, 67.27; H, 6.59; N, 26.15%. Found: C, 67.13; H, 6.87; N, 26.04%.

Synthesis of [Ag2(bib)2](NO3)2.2H2O. To a solution of AgNO3 (0.169 g, 1 mmol) in MeCN-H2O (v/v 1:1), an aqueous solution (2 ml) of bib (0.214 g, 1 mmol) was added. The pale-yellow solution was allowed to stand at room temperature in air avoiding illumination for a few days by slow evaporation. Colourless prismatic crystals of the title complex were obtained, which were collected by filtration washed with aqueous MeCN and dried in a vacuum desiccator over silica gel (ca 0.108 g, 27% yield based on AgNO3). Anal. calc. for C24H32Ag2N10O8. Main IR bands (KBr, cm-1): 3340m, 2968w, 2887w, 1615m, 1567m, 1510m, 1473m, 1365 s, 1279 s, 1184m, 1049w, 983w, 693w, 576w, 528w.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). The positions of H atoms for water molecule were calculated (Nardelli, 1999) and included in the subsequent refinement as riding with Uiso(H) = 1.5Ueq(O).

In the final difference map, the highest peak is 1.35 Å from Ag1 and the deepest hole is 1.30 Å from Ag2.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of [Ag2(bib)2](NO3)2.2H2O showing the hydrogen bond interactions as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.[Symmetry codes: (i) 1 + x, y, 1 + z; (ii) x, y - 1, 1 + z]
Bis[µ-1,4-bis(4,5-dihydro-1H-imidazol-2-yl)benzene- κ2N3:N3']silver(I) dinitrate dihydrate top
Crystal data top
[Ag2(C12H14N4)2](NO3)2·2H2OZ = 2
Mr = 804.34F(000) = 808
Triclinic, P1Dx = 1.823 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3562 (19) ÅCell parameters from 2137 reflections
b = 11.053 (2) Åθ = 2.5–23.9°
c = 13.282 (2) ŵ = 1.40 mm1
α = 97.496 (3)°T = 273 K
β = 95.354 (3)°Block, colourless
γ = 101.613 (3)°0.30 × 0.25 × 0.20 mm
V = 1465.3 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5316 independent reflections
Radiation source: fine-focus sealed tube3797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.678, Tmax = 0.767k = 1113
7650 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1055P)2]
where P = (Fo2 + 2Fc2)/3
5316 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 2.17 e Å3
3 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Ag2(C12H14N4)2](NO3)2·2H2Oγ = 101.613 (3)°
Mr = 804.34V = 1465.3 (4) Å3
Triclinic, P1Z = 2
a = 10.3562 (19) ÅMo Kα radiation
b = 11.053 (2) ŵ = 1.40 mm1
c = 13.282 (2) ÅT = 273 K
α = 97.496 (3)°0.30 × 0.25 × 0.20 mm
β = 95.354 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3797 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.767Rint = 0.017
7650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.92Δρmax = 2.17 e Å3
5316 reflectionsΔρmin = 0.82 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.72496 (4)0.29100 (4)0.19588 (3)0.04584 (17)
Ag21.24475 (4)0.78014 (4)0.21805 (3)0.04782 (17)
N10.5471 (5)0.3689 (5)0.0866 (4)0.0556 (13)
H10.54610.40980.13740.067*
N20.6169 (4)0.3282 (4)0.0656 (3)0.0444 (11)
N31.0950 (5)0.8764 (5)0.0663 (4)0.0562 (13)
H31.04370.85900.12340.067*
N41.1847 (4)0.8423 (4)0.0829 (3)0.0446 (11)
N50.7991 (4)0.2146 (4)0.3188 (3)0.0425 (10)
N60.9176 (5)0.1613 (4)0.4484 (3)0.0487 (12)
H60.98710.16360.49010.058*
N71.3532 (4)0.7500 (4)0.3484 (3)0.0443 (11)
N81.4423 (4)0.6791 (4)0.4819 (4)0.0510 (12)
H81.44960.62820.52480.061*
C10.4473 (5)0.2619 (6)0.0755 (4)0.0510 (14)
H1A0.45480.18800.12090.061*
H1B0.35860.27680.08860.061*
C20.4810 (6)0.2495 (6)0.0358 (4)0.0542 (15)
H2A0.41840.27960.07750.065*
H2B0.47960.16320.04330.065*
C30.6420 (5)0.3957 (5)0.0059 (4)0.0389 (12)
C40.7598 (5)0.4977 (5)0.0017 (4)0.0373 (11)
C50.7993 (5)0.5387 (5)0.0918 (4)0.0458 (13)
H50.75400.49840.15490.055*
C60.9054 (5)0.6390 (5)0.0876 (4)0.0478 (14)
H6A0.92990.66610.14790.057*
C70.9754 (5)0.6992 (5)0.0054 (4)0.0385 (12)
C80.9353 (5)0.6586 (5)0.0946 (4)0.0449 (13)
H8A0.98030.69920.15760.054*
C90.8298 (5)0.5590 (5)0.0907 (4)0.0430 (12)
H90.80530.53270.15120.052*
C101.0863 (5)0.8076 (5)0.0097 (4)0.0391 (12)
C111.2038 (6)0.9842 (6)0.0381 (5)0.0585 (16)
H11A1.17181.06040.02230.070*
H11B1.26070.99340.09180.070*
C121.2758 (6)0.9513 (5)0.0572 (4)0.0529 (15)
H12A1.35960.93070.04280.064*
H12B1.29291.02060.11300.064*
C130.7201 (6)0.0958 (5)0.3396 (4)0.0517 (14)
H13A0.71690.02900.28370.062*
H13B0.63010.10340.34870.062*
C140.7918 (6)0.0695 (5)0.4389 (4)0.0488 (14)
H14A0.74330.08410.49680.059*
H14B0.80550.01530.43190.059*
C150.9071 (5)0.2413 (5)0.3818 (4)0.0407 (12)
C161.0166 (5)0.3512 (5)0.3846 (4)0.0379 (11)
C170.9944 (5)0.4653 (5)0.3636 (4)0.0404 (12)
H170.90800.47330.34540.048*
C181.0980 (5)0.5674 (4)0.3691 (4)0.0349 (11)
H181.08140.64280.35320.042*
C191.2278 (5)0.5569 (5)0.3987 (4)0.0380 (12)
C201.2499 (5)0.4421 (5)0.4183 (4)0.0422 (12)
H201.33630.43350.43600.051*
C211.1465 (5)0.3411 (5)0.4119 (4)0.0413 (12)
H211.16330.26510.42600.050*
C221.3392 (5)0.6637 (5)0.4076 (4)0.0359 (11)
C231.4810 (6)0.8388 (6)0.3862 (5)0.0539 (15)
H23A1.46670.92260.40440.065*
H23B1.54070.84020.33400.065*
C241.5388 (5)0.7930 (5)0.4794 (4)0.0530 (14)
H24A1.62600.77630.47110.064*
H24B1.54500.85280.54090.064*
N90.9177 (6)0.9780 (5)0.2608 (4)0.0576 (13)
O10.8766 (5)0.8843 (4)0.2188 (4)0.0705 (13)
O21.0326 (5)1.0387 (4)0.2346 (4)0.0724 (13)
O30.8422 (6)1.0092 (5)0.3252 (4)0.0875 (16)
N100.4137 (5)0.4736 (5)0.2932 (3)0.0514 (12)
O40.3505 (5)0.5295 (5)0.3486 (3)0.0719 (13)
O50.3607 (4)0.3683 (5)0.2766 (3)0.0703 (13)
O60.5283 (4)0.5234 (4)0.2531 (3)0.0635 (12)
O1W1.1003 (4)0.2239 (4)0.6372 (3)0.0721 (13)
H11W1.06370.19430.68600.108*
H12W1.17750.26580.66160.108*
O2W0.5808 (5)0.7918 (5)0.2779 (4)0.0920 (16)
H21W0.66390.81270.28030.138*
H22W0.56690.72830.24730.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0469 (3)0.0491 (3)0.0405 (3)0.0061 (2)0.00367 (19)0.01590 (19)
Ag20.0504 (3)0.0478 (3)0.0440 (3)0.0056 (2)0.00285 (19)0.0163 (2)
N10.051 (3)0.065 (3)0.045 (3)0.005 (2)0.012 (2)0.024 (2)
N20.044 (3)0.051 (3)0.036 (2)0.005 (2)0.0003 (19)0.014 (2)
N30.059 (3)0.062 (3)0.043 (3)0.000 (3)0.007 (2)0.024 (2)
N40.049 (3)0.041 (3)0.040 (2)0.001 (2)0.000 (2)0.010 (2)
N50.039 (2)0.044 (3)0.042 (2)0.004 (2)0.004 (2)0.012 (2)
N60.049 (3)0.050 (3)0.046 (3)0.007 (2)0.007 (2)0.020 (2)
N70.042 (3)0.044 (3)0.044 (2)0.005 (2)0.005 (2)0.011 (2)
N80.043 (3)0.052 (3)0.055 (3)0.002 (2)0.010 (2)0.023 (2)
C10.045 (3)0.059 (4)0.046 (3)0.005 (3)0.006 (3)0.015 (3)
C20.049 (3)0.060 (4)0.051 (3)0.002 (3)0.002 (3)0.019 (3)
C30.039 (3)0.047 (3)0.031 (3)0.012 (2)0.002 (2)0.007 (2)
C40.040 (3)0.041 (3)0.034 (3)0.013 (2)0.004 (2)0.012 (2)
C50.052 (3)0.047 (3)0.034 (3)0.003 (3)0.001 (2)0.008 (2)
C60.053 (3)0.058 (4)0.033 (3)0.009 (3)0.006 (2)0.017 (3)
C70.039 (3)0.042 (3)0.036 (3)0.012 (2)0.002 (2)0.009 (2)
C80.045 (3)0.053 (3)0.034 (3)0.006 (3)0.004 (2)0.013 (2)
C90.044 (3)0.053 (3)0.032 (3)0.003 (3)0.002 (2)0.016 (2)
C100.044 (3)0.040 (3)0.036 (3)0.010 (2)0.007 (2)0.012 (2)
C110.058 (4)0.057 (4)0.058 (4)0.002 (3)0.004 (3)0.025 (3)
C120.052 (4)0.051 (3)0.051 (3)0.003 (3)0.008 (3)0.015 (3)
C130.045 (3)0.052 (3)0.055 (4)0.001 (3)0.002 (3)0.022 (3)
C140.052 (3)0.049 (3)0.047 (3)0.004 (3)0.008 (3)0.019 (3)
C150.041 (3)0.041 (3)0.042 (3)0.008 (2)0.004 (2)0.015 (2)
C160.039 (3)0.041 (3)0.034 (3)0.007 (2)0.001 (2)0.011 (2)
C170.040 (3)0.046 (3)0.039 (3)0.016 (2)0.004 (2)0.012 (2)
C180.038 (3)0.027 (2)0.040 (3)0.007 (2)0.001 (2)0.010 (2)
C190.041 (3)0.043 (3)0.031 (3)0.009 (2)0.004 (2)0.009 (2)
C200.036 (3)0.045 (3)0.050 (3)0.012 (2)0.004 (2)0.017 (2)
C210.040 (3)0.037 (3)0.048 (3)0.009 (2)0.000 (2)0.014 (2)
C220.034 (3)0.040 (3)0.038 (3)0.012 (2)0.005 (2)0.014 (2)
C230.045 (3)0.047 (3)0.063 (4)0.006 (3)0.002 (3)0.013 (3)
C240.043 (3)0.057 (4)0.052 (3)0.001 (3)0.007 (3)0.013 (3)
N90.073 (4)0.060 (3)0.045 (3)0.027 (3)0.003 (3)0.010 (3)
O10.076 (3)0.061 (3)0.073 (3)0.010 (2)0.001 (2)0.020 (2)
O20.080 (4)0.068 (3)0.070 (3)0.010 (3)0.006 (3)0.024 (3)
O30.103 (4)0.096 (4)0.069 (3)0.042 (3)0.018 (3)0.025 (3)
N100.049 (3)0.069 (4)0.038 (3)0.017 (3)0.003 (2)0.013 (2)
O40.069 (3)0.090 (4)0.062 (3)0.029 (3)0.009 (2)0.026 (3)
O50.063 (3)0.078 (3)0.066 (3)0.004 (3)0.002 (2)0.026 (3)
O60.047 (3)0.077 (3)0.062 (3)0.005 (2)0.004 (2)0.015 (2)
O1W0.068 (3)0.077 (3)0.067 (3)0.004 (2)0.015 (2)0.031 (3)
O2W0.079 (3)0.127 (5)0.071 (3)0.016 (3)0.005 (3)0.027 (3)
Geometric parameters (Å, º) top
Ag1—N52.087 (4)C8—H8A0.9300
Ag1—N22.104 (4)C9—H90.9300
Ag2—N72.076 (4)C11—C121.530 (8)
Ag2—N42.089 (4)C11—H11A0.9700
N1—C31.344 (7)C11—H11B0.9700
N1—C11.439 (7)C12—H12A0.9700
N1—H10.8600C12—H12B0.9700
N2—C31.296 (7)C13—C141.542 (7)
N2—C21.486 (7)C13—H13A0.9700
N3—C101.339 (6)C13—H13B0.9700
N3—C111.447 (7)C14—H14A0.9700
N3—H30.8600C14—H14B0.9700
N4—C101.300 (7)C15—C161.480 (7)
N4—C121.473 (7)C16—C171.385 (7)
N5—C151.291 (7)C16—C211.390 (7)
N5—C131.474 (7)C17—C181.381 (7)
N6—C151.343 (6)C17—H170.9300
N6—C141.466 (7)C18—C191.397 (7)
N6—H60.8600C18—H180.9300
N7—C221.308 (7)C19—C201.386 (7)
N7—C231.480 (7)C19—C221.459 (7)
N8—C221.352 (7)C20—C211.371 (7)
N8—C241.447 (7)C20—H200.9300
N8—H80.8600C21—H210.9300
C1—C21.517 (7)C23—C241.515 (8)
C1—H1A0.9700C23—H23A0.9700
C1—H1B0.9700C23—H23B0.9700
C2—H2A0.9700C24—H24A0.9700
C2—H2B0.9700C24—H24B0.9700
C3—C41.475 (7)N9—O31.234 (6)
C4—C91.382 (7)N9—O21.236 (7)
C4—C51.402 (7)N9—O11.258 (7)
C5—C61.386 (7)N10—O51.239 (6)
C5—H50.9300N10—O61.240 (6)
C6—C71.385 (7)N10—O41.243 (6)
C6—H6A0.9300O1W—H11W0.8499
C7—C81.390 (7)O1W—H12W0.8500
C7—C101.475 (7)O2W—H21W0.8500
C8—C91.378 (7)O2W—H22W0.8499
N5—Ag1—N2166.51 (18)N3—C11—H11B111.5
N7—Ag2—N4164.37 (18)C12—C11—H11B111.5
C3—N1—C1110.0 (5)H11A—C11—H11B109.3
C3—N1—H1125.0N4—C12—C11105.0 (5)
C1—N1—H1125.0N4—C12—H12A110.8
C3—N2—C2107.1 (4)C11—C12—H12A110.8
C3—N2—Ag1136.2 (4)N4—C12—H12B110.8
C2—N2—Ag1116.2 (3)C11—C12—H12B110.8
C10—N3—C11109.9 (5)H12A—C12—H12B108.8
C10—N3—H3125.1N5—C13—C14105.5 (4)
C11—N3—H3125.1N5—C13—H13A110.6
C10—N4—C12107.7 (4)C14—C13—H13A110.6
C10—N4—Ag2136.8 (4)N5—C13—H13B110.6
C12—N4—Ag2115.5 (3)C14—C13—H13B110.6
C15—N5—C13107.1 (4)H13A—C13—H13B108.8
C15—N5—Ag1135.4 (4)N6—C14—C13100.8 (4)
C13—N5—Ag1117.3 (3)N6—C14—H14A111.6
C15—N6—C14109.1 (4)C13—C14—H14A111.6
C15—N6—H6125.4N6—C14—H14B111.6
C14—N6—H6125.4C13—C14—H14B111.6
C22—N7—C23107.4 (4)H14A—C14—H14B109.4
C22—N7—Ag2134.8 (4)N5—C15—N6115.9 (5)
C23—N7—Ag2117.7 (4)N5—C15—C16124.9 (5)
C22—N8—C24110.8 (4)N6—C15—C16119.2 (5)
C22—N8—H8124.6C17—C16—C21118.5 (5)
C24—N8—H8124.6C17—C16—C15122.4 (5)
N1—C1—C2101.7 (4)C21—C16—C15119.1 (4)
N1—C1—H1A111.4C18—C17—C16121.4 (5)
C2—C1—H1A111.4C18—C17—H17119.3
N1—C1—H1B111.4C16—C17—H17119.3
C2—C1—H1B111.4C17—C18—C19119.6 (4)
H1A—C1—H1B109.3C17—C18—H18120.2
N2—C2—C1104.6 (4)C19—C18—H18120.2
N2—C2—H2A110.8C20—C19—C18118.9 (5)
C1—C2—H2A110.8C20—C19—C22120.1 (5)
N2—C2—H2B110.8C18—C19—C22121.1 (4)
C1—C2—H2B110.8C21—C20—C19121.0 (5)
H2A—C2—H2B108.9C21—C20—H20119.5
N2—C3—N1114.1 (5)C19—C20—H20119.5
N2—C3—C4125.2 (5)C20—C21—C16120.6 (5)
N1—C3—C4120.6 (5)C20—C21—H21119.7
C9—C4—C5118.3 (5)C16—C21—H21119.7
C9—C4—C3121.3 (4)N7—C22—N8113.6 (5)
C5—C4—C3120.3 (5)N7—C22—C19126.5 (5)
C6—C5—C4120.4 (5)N8—C22—C19119.9 (4)
C6—C5—H5119.8N7—C23—C24106.2 (4)
C4—C5—H5119.8N7—C23—H23A110.5
C7—C6—C5120.7 (5)C24—C23—H23A110.5
C7—C6—H6A119.6N7—C23—H23B110.5
C5—C6—H6A119.6C24—C23—H23B110.5
C6—C7—C8118.6 (5)H23A—C23—H23B108.7
C6—C7—C10120.5 (5)N8—C24—C23101.8 (4)
C8—C7—C10120.8 (5)N8—C24—H24A111.4
C9—C8—C7120.8 (5)C23—C24—H24A111.4
C9—C8—H8A119.6N8—C24—H24B111.4
C7—C8—H8A119.6C23—C24—H24B111.4
C8—C9—C4121.1 (5)H24A—C24—H24B109.3
C8—C9—H9119.5O3—N9—O2121.3 (6)
C4—C9—H9119.5O3—N9—O1119.7 (6)
N4—C10—N3114.4 (5)O2—N9—O1118.9 (5)
N4—C10—C7124.5 (5)O5—N10—O6120.0 (5)
N3—C10—C7121.1 (5)O5—N10—O4119.6 (5)
N3—C11—C12101.6 (4)O6—N10—O4120.4 (5)
N3—C11—H11A111.5H11W—O1W—H12W107.7
C12—C11—H11A111.5H21W—O2W—H22W107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.862.122.980 (6)173
N1—H1···O50.862.463.029 (6)124
N3—H3···O10.862.132.915 (7)151
N3—H3···O20.862.643.143 (6)119
N6—H6···O1W0.862.132.912 (6)150
N8—H8···O4i0.862.333.073 (7)145
O1W—H11W···O2ii0.852.122.852 (6)144
O1W—H12W···O5i0.852.042.888 (7)178
O2W—H21W···O10.852.223.021 (7)157
O2W—H22W···O60.852.212.973 (7)150
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C12H14N4)2](NO3)2·2H2O
Mr804.34
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.3562 (19), 11.053 (2), 13.282 (2)
α, β, γ (°)97.496 (3), 95.354 (3), 101.613 (3)
V3)1465.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.678, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
7650, 5316, 3797
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 0.92
No. of reflections5316
No. of parameters397
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.17, 0.82

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.862.122.980 (6)172.9
N1—H1···O50.862.463.029 (6)123.8
N3—H3···O10.862.132.915 (7)150.7
N3—H3···O20.862.643.143 (6)118.6
N6—H6···O1W0.862.132.912 (6)150.2
N8—H8···O4i0.862.333.073 (7)145.1
O1W—H11W···O2ii0.852.122.852 (6)144.3
O1W—H12W···O5i0.852.042.888 (7)178.4
O2W—H21W···O10.852.223.021 (7)156.5
O2W—H22W···O60.852.212.973 (7)149.7
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z+1.
 

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (Nos. 20571033 and 20701016).

References

First citationBruker, (1998). SMART, SAINT and SADABS. Bruker AXS Inc., ADISON. Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 220–206.  Web of Science CSD CrossRef Google Scholar
First citationRen, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. Int. Ed. 44, 2237–2241.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258–1260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m427-m428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds