organic compounds
3-Chloro-2-methylanilinium dihydrogenphosphate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn
The structure of the title compound, C7H9ClN+·H2PO4−, contains inorganic layers built by (H2PO4)− anions and which are parallel to the ab planes around z = . 3-Chloro-2-methylanilinium cations are anchored between the inorganic layers through N—H⋯O hydrogen bonds. Electrostatic and van der Waals interactions, as well as hydrogen bonds, maintain the structural cohesion.
Related literature
For related literature, see: Adams (1977); Blessing (1986); Chtioui & Jouini (2004); Desiraju (1989, 1995); Hebert (1978); Oueslati & Ben Nasr (2006).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808001700/dn2313sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001700/dn2313Isup2.hkl
Single crystals of the title compound (I) were prepared by adding drop by drop under stirring, an aqueous solution (10 ml) of orthophosphoric acid (0.25 mmol) (85 weight from Fluka %) to an alcoholic solution (10 ml) of 3-Cloro-2-methylaniline (0.15 mmol)(Across 98). The obtained solution was then slowly evaporated at room temperature until the formation of single crystals which were stable under normal condition of temperature and humidity.
All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (Caromatic) or 0.96 Å (Cmethyl), N—H= 0.89 Å and O—H = 0.82 Å and with Uiso=1.2Ueq(Caromatic,O) or Uiso=1.5Ueq(Cmethyl,N).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C7H9ClN+·H2PO4− | F(000) = 496 |
Mr = 239.59 | Dx = 1.446 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 16.942 (6) Å | θ = 8–11° |
b = 8.272 (2) Å | µ = 0.48 mm−1 |
c = 7.979 (7) Å | T = 292 K |
β = 100.11 (5)° | Prism, colorless |
V = 1100.8 (11) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 4 |
Enraf–Nonius TurboCAD4 diffractometer | Rint = 0.027 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.4° |
Graphite monochromator | h = −10→20 |
non–profiled ω scans | k = −9→0 |
3304 measured reflections | l = −9→9 |
1932 independent reflections | 2 standard reflections every 120 min |
1736 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0675P)2 + 0.6257P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.011 |
1932 reflections | Δρmax = 0.36 e Å−3 |
132 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.015 (3) |
C7H9ClN+·H2PO4− | V = 1100.8 (11) Å3 |
Mr = 239.59 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.942 (6) Å | µ = 0.48 mm−1 |
b = 8.272 (2) Å | T = 292 K |
c = 7.979 (7) Å | 0.40 × 0.30 × 0.20 mm |
β = 100.11 (5)° |
Enraf–Nonius TurboCAD4 diffractometer | Rint = 0.027 |
3304 measured reflections | 2 standard reflections every 120 min |
1932 independent reflections | intensity decay: 1% |
1736 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.36 e Å−3 |
1932 reflections | Δρmin = −0.38 e Å−3 |
132 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.43820 (3) | 0.46630 (6) | 0.23711 (6) | 0.0298 (2) | |
O1 | 0.39492 (10) | 0.5342 (2) | 0.3800 (2) | 0.0503 (5) | |
H1 | 0.4278 | 0.5477 | 0.4674 | 0.075* | |
O2 | 0.44438 (12) | 0.60754 (19) | 0.11002 (19) | 0.0462 (5) | |
H2 | 0.4562 | 0.6914 | 0.1634 | 0.069* | |
O3 | 0.52069 (9) | 0.40766 (18) | 0.31601 (17) | 0.0346 (4) | |
O4 | 0.38537 (10) | 0.34256 (19) | 0.13619 (18) | 0.0408 (4) | |
Cl1 | 0.95781 (6) | 0.6138 (3) | 0.2672 (2) | 0.1564 (8) | |
N1 | 0.65051 (11) | 0.5738 (2) | 0.1985 (2) | 0.0342 (4) | |
H1A | 0.6130 | 0.5026 | 0.2138 | 0.051* | |
H1B | 0.6435 | 0.6023 | 0.0893 | 0.051* | |
H1C | 0.6468 | 0.6609 | 0.2621 | 0.051* | |
C1 | 0.72967 (14) | 0.5010 (3) | 0.2480 (3) | 0.0392 (5) | |
C2 | 0.79647 (15) | 0.5918 (4) | 0.2317 (3) | 0.0524 (7) | |
C3 | 0.86992 (18) | 0.5110 (6) | 0.2839 (5) | 0.0784 (10) | |
C4 | 0.8752 (2) | 0.3579 (6) | 0.3475 (6) | 0.0954 (13) | |
H4 | 0.9252 | 0.3102 | 0.3805 | 0.114* | |
C5 | 0.8074 (2) | 0.2742 (5) | 0.3631 (6) | 0.0875 (12) | |
H5 | 0.8110 | 0.1701 | 0.4078 | 0.105* | |
C6 | 0.73348 (18) | 0.3460 (3) | 0.3116 (4) | 0.0617 (8) | |
H6 | 0.6867 | 0.2900 | 0.3199 | 0.074* | |
C7 | 0.7899 (2) | 0.7623 (5) | 0.1667 (5) | 0.0807 (11) | |
H7A | 0.7432 | 0.8123 | 0.1966 | 0.121* | |
H7B | 0.7856 | 0.7619 | 0.0451 | 0.121* | |
H7C | 0.8368 | 0.8219 | 0.2168 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0413 (4) | 0.0243 (3) | 0.0221 (3) | −0.0007 (2) | 0.0007 (2) | −0.00082 (18) |
O1 | 0.0444 (9) | 0.0731 (13) | 0.0312 (9) | 0.0113 (9) | 0.0005 (7) | −0.0125 (8) |
O2 | 0.0800 (12) | 0.0248 (8) | 0.0297 (8) | −0.0045 (8) | −0.0020 (8) | 0.0030 (6) |
O3 | 0.0448 (9) | 0.0301 (8) | 0.0276 (7) | 0.0037 (6) | 0.0023 (6) | −0.0020 (6) |
O4 | 0.0548 (9) | 0.0355 (9) | 0.0285 (7) | −0.0119 (7) | −0.0026 (7) | 0.0004 (6) |
Cl1 | 0.0485 (6) | 0.2330 (19) | 0.1867 (15) | −0.0312 (8) | 0.0178 (7) | 0.0464 (14) |
N1 | 0.0391 (10) | 0.0352 (9) | 0.0272 (8) | −0.0005 (8) | 0.0029 (7) | −0.0024 (7) |
C1 | 0.0416 (12) | 0.0449 (12) | 0.0305 (11) | 0.0019 (10) | 0.0048 (9) | −0.0055 (9) |
C2 | 0.0451 (14) | 0.0698 (18) | 0.0419 (13) | −0.0073 (13) | 0.0061 (11) | −0.0006 (13) |
C3 | 0.0414 (15) | 0.118 (3) | 0.075 (2) | −0.0034 (18) | 0.0094 (15) | 0.001 (2) |
C4 | 0.060 (2) | 0.113 (3) | 0.109 (3) | 0.035 (2) | 0.005 (2) | 0.011 (3) |
C5 | 0.072 (2) | 0.066 (2) | 0.120 (3) | 0.0236 (18) | 0.005 (2) | 0.017 (2) |
C6 | 0.0540 (15) | 0.0458 (15) | 0.083 (2) | 0.0069 (13) | 0.0066 (14) | 0.0043 (14) |
C7 | 0.075 (2) | 0.085 (2) | 0.079 (2) | −0.0277 (19) | 0.0063 (18) | 0.0238 (19) |
P1—O4 | 1.4980 (16) | C1—C2 | 1.383 (4) |
P1—O3 | 1.5087 (17) | C2—C3 | 1.409 (4) |
P1—O2 | 1.5626 (17) | C2—C7 | 1.500 (5) |
P1—O1 | 1.5641 (19) | C3—C4 | 1.361 (6) |
O1—H1 | 0.8200 | C4—C5 | 1.365 (6) |
O2—H2 | 0.8200 | C4—H4 | 0.9300 |
Cl1—C3 | 1.740 (4) | C5—C6 | 1.382 (4) |
N1—C1 | 1.460 (3) | C5—H5 | 0.9300 |
N1—H1A | 0.8900 | C6—H6 | 0.9300 |
N1—H1B | 0.8900 | C7—H7A | 0.9600 |
N1—H1C | 0.8900 | C7—H7B | 0.9600 |
C1—C6 | 1.377 (4) | C7—H7C | 0.9600 |
O4—P1—O3 | 115.27 (9) | C3—C2—C7 | 123.8 (3) |
O4—P1—O2 | 105.31 (10) | C4—C3—C2 | 123.3 (3) |
O3—P1—O2 | 110.39 (10) | C4—C3—Cl1 | 118.8 (3) |
O4—P1—O1 | 108.96 (11) | C2—C3—Cl1 | 117.9 (3) |
O3—P1—O1 | 109.25 (10) | C3—C4—C5 | 120.3 (3) |
O2—P1—O1 | 107.34 (11) | C3—C4—H4 | 119.9 |
P1—O1—H1 | 109.5 | C5—C4—H4 | 119.9 |
P1—O2—H2 | 109.5 | C4—C5—C6 | 119.2 (4) |
C1—N1—H1A | 109.5 | C4—C5—H5 | 120.4 |
C1—N1—H1B | 109.5 | C6—C5—H5 | 120.4 |
H1A—N1—H1B | 109.5 | C1—C6—C5 | 119.4 (3) |
C1—N1—H1C | 109.5 | C1—C6—H6 | 120.3 |
H1A—N1—H1C | 109.5 | C5—C6—H6 | 120.3 |
H1B—N1—H1C | 109.5 | C2—C7—H7A | 109.5 |
C6—C1—C2 | 123.7 (3) | C2—C7—H7B | 109.5 |
C6—C1—N1 | 117.7 (2) | H7A—C7—H7B | 109.5 |
C2—C1—N1 | 118.6 (2) | C2—C7—H7C | 109.5 |
C1—C2—C3 | 114.2 (3) | H7A—C7—H7C | 109.5 |
C1—C2—C7 | 122.1 (3) | H7B—C7—H7C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.83 | 2.634 (3) | 166 |
O2—H2···O3ii | 0.82 | 1.83 | 2.596 (2) | 154 |
N1—H1A···O3 | 0.89 | 2.04 | 2.886 (3) | 158 |
N1—H1B···O4iii | 0.89 | 1.84 | 2.722 (3) | 172 |
N1—H1C···O4ii | 0.89 | 1.84 | 2.708 (3) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C7H9ClN+·H2PO4− |
Mr | 239.59 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 292 |
a, b, c (Å) | 16.942 (6), 8.272 (2), 7.979 (7) |
β (°) | 100.11 (5) |
V (Å3) | 1100.8 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3304, 1932, 1736 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.122, 1.08 |
No. of reflections | 1932 |
No. of parameters | 132 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.38 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.83 | 2.634 (3) | 165.8 |
O2—H2···O3ii | 0.82 | 1.83 | 2.596 (2) | 154.3 |
N1—H1A···O3 | 0.89 | 2.04 | 2.886 (3) | 157.5 |
N1—H1B···O4iii | 0.89 | 1.84 | 2.722 (3) | 172.4 |
N1—H1C···O4ii | 0.89 | 1.84 | 2.708 (3) | 166.3 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z. |
References
Adams, J. M. (1977). Acta Cryst. B33, 1513–1515. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chtioui, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 43–49. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids , Vol. 54. New York: Elsevier. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hebert, H. (1978). Acta Cryst. B34, 611–615. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Oueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x177–x178. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Inorganic-organic hybrid materials have been studied extensively because the blending of organic and inorganic components allows to the development of materials with novel properties. In particular the family of material which combine monophosphate anions with organic molecules such as aliphatic and aromatic amines has been studied intensively due to their numerous uses in various fields such as biomolecular science, liquid crystals, catalysts and fuel cells (Adams, 1977; Blessing, 1986; Desiraju, 1989, 1995). As a contribution to the study of this compound family, we report in this work the synthesis and the crystal structure of a new organic cation monophosphate [3-Cl-2-CH3C6H3NH3]H2PO4 (I).
The asymmetric unit in the structure of I consists of one phosphate anion (H2PO4)- and one organic cation (3-Cl-2-CH3C6H3NH3)+ (Fig. 1). A projection of the structure in the [001] direction shows that the (H2PO4) groups are interconnected by O—H···.O hydrogen bonds to form inorganic layers parallel to the (a, b) planes (Fig. 2). On both sides of each inorganic layer (Fig. 3), are grafted the organic cations compensating their negatives charges. Each (H2PO4) group is connected to three neighbours by strong hydrogen bonds, with O···O separations ranging from 2.596 (2) Å to 2.634 (3) Å (Table 1). Among the P—O distances in the PO4 tetrahedron, we can distinguish two different types: the shortest ones (1.498 (2) Å and 1.509 (2) Å) correspond to the phosphorus atom double bonded to oxygen atom (P=O); the largest ones (1.563 (2) Å and 1.564 (2) Å) can be attributed to P—OH distances. The average P—O distances and O—P—O bond angles are 1.534 Å and 109.42°, respectively, which fall in the range of the values observed in many phosphate materials (Hebert, 1978)). The strength of O—H···O hydrogen bond and the values of P···P distances (with a minimum value of 4.383 (4) Å) between two successive inorganic layers could allow us to consider the (H2PO4)n- subnetwork as a polymeric species. Similar arrangement have been observed in other crystal structures (Chtioui & Jouini, 2004). The C—C bond lengths spreading between are 1.361 (6) and 1.500 (5) Å, which are between single and double bond and agree with that in 4-chloroanilinium dihydrogenmonophosphate (Oueslati & Ben Nasr, 2006).