organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-2-methyl­anilinium di­hydrogenphosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 14 January 2008; accepted 16 January 2008; online 30 January 2008)

The structure of the title compound, C7H9ClN+·H2PO4, contains inorganic layers built by (H2PO4) anions and which are parallel to the ab planes around z = [{1 \over 2}]. 3-Chloro-2-methyl­anilinium cations are anchored between the inorganic layers through N—H⋯O hydrogen bonds. Electrostatic and van der Waals inter­actions, as well as hydrogen bonds, maintain the structural cohesion.

Related literature

For related literature, see: Adams (1977[Adams, J. M. (1977). Acta Cryst. B33, 1513-1515.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Chtioui & Jouini (2004[Chtioui, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 43-49.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids , Vol. 54. New York: Elsevier.], 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.]); Hebert (1978[Hebert, H. (1978). Acta Cryst. B34, 611-615.]); Oueslati & Ben Nasr (2006[Oueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x177-x178.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9ClN+·H2PO4

  • Mr = 239.59

  • Monoclinic, P 21 /c

  • a = 16.942 (6) Å

  • b = 8.272 (2) Å

  • c = 7.979 (7) Å

  • β = 100.11 (5)°

  • V = 1100.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 292 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 3304 measured reflections

  • 1932 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.08

  • 1932 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.83 2.634 (3) 166
O2—H2⋯O3ii 0.82 1.83 2.596 (2) 154
N1—H1A⋯O3 0.89 2.04 2.886 (3) 158
N1—H1B⋯O4iii 0.89 1.84 2.722 (3) 172
N1—H1C⋯O4ii 0.89 1.84 2.708 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Inorganic-organic hybrid materials have been studied extensively because the blending of organic and inorganic components allows to the development of materials with novel properties. In particular the family of material which combine monophosphate anions with organic molecules such as aliphatic and aromatic amines has been studied intensively due to their numerous uses in various fields such as biomolecular science, liquid crystals, catalysts and fuel cells (Adams, 1977; Blessing, 1986; Desiraju, 1989, 1995). As a contribution to the study of this compound family, we report in this work the synthesis and the crystal structure of a new organic cation monophosphate [3-Cl-2-CH3C6H3NH3]H2PO4 (I).

The asymmetric unit in the structure of I consists of one phosphate anion (H2PO4)- and one organic cation (3-Cl-2-CH3C6H3NH3)+ (Fig. 1). A projection of the structure in the [001] direction shows that the (H2PO4) groups are interconnected by O—H···.O hydrogen bonds to form inorganic layers parallel to the (a, b) planes (Fig. 2). On both sides of each inorganic layer (Fig. 3), are grafted the organic cations compensating their negatives charges. Each (H2PO4) group is connected to three neighbours by strong hydrogen bonds, with O···O separations ranging from 2.596 (2) Å to 2.634 (3) Å (Table 1). Among the P—O distances in the PO4 tetrahedron, we can distinguish two different types: the shortest ones (1.498 (2) Å and 1.509 (2) Å) correspond to the phosphorus atom double bonded to oxygen atom (P=O); the largest ones (1.563 (2) Å and 1.564 (2) Å) can be attributed to P—OH distances. The average P—O distances and O—P—O bond angles are 1.534 Å and 109.42°, respectively, which fall in the range of the values observed in many phosphate materials (Hebert, 1978)). The strength of O—H···O hydrogen bond and the values of P···P distances (with a minimum value of 4.383 (4) Å) between two successive inorganic layers could allow us to consider the (H2PO4)n- subnetwork as a polymeric species. Similar arrangement have been observed in other crystal structures (Chtioui & Jouini, 2004). The C—C bond lengths spreading between are 1.361 (6) and 1.500 (5) Å, which are between single and double bond and agree with that in 4-chloroanilinium dihydrogenmonophosphate (Oueslati & Ben Nasr, 2006).

Related literature top

For related literature, see: Adams (1977); Blessing (1986); Chtioui & Jouini (2004); Desiraju (1989, 1995); Hebert (1978); Oueslati & Ben Nasr (2006).

Experimental top

Single crystals of the title compound (I) were prepared by adding drop by drop under stirring, an aqueous solution (10 ml) of orthophosphoric acid (0.25 mmol) (85 weight from Fluka %) to an alcoholic solution (10 ml) of 3-Cloro-2-methylaniline (0.15 mmol)(Across 98). The obtained solution was then slowly evaporated at room temperature until the formation of single crystals which were stable under normal condition of temperature and humidity.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (Caromatic) or 0.96 Å (Cmethyl), N—H= 0.89 Å and O—H = 0.82 Å and with Uiso=1.2Ueq(Caromatic,O) or Uiso=1.5Ueq(Cmethyl,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
[Figure 2] Fig. 2. Projection of (H2PO4)n- subnetwork along c axis.
[Figure 3] Fig. 3. Projection of (I) along b axis.
3-Chloro-2-methylanilinium dihydrogenphosphate top
Crystal data top
C7H9ClN+·H2PO4F(000) = 496
Mr = 239.59Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.942 (6) Åθ = 8–11°
b = 8.272 (2) ŵ = 0.48 mm1
c = 7.979 (7) ÅT = 292 K
β = 100.11 (5)°Prism, colorless
V = 1100.8 (11) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.4°
Graphite monochromatorh = 1020
non–profiled ω scansk = 90
3304 measured reflectionsl = 99
1932 independent reflections2 standard reflections every 120 min
1736 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.6257P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.011
1932 reflectionsΔρmax = 0.36 e Å3
132 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C7H9ClN+·H2PO4V = 1100.8 (11) Å3
Mr = 239.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.942 (6) ŵ = 0.48 mm1
b = 8.272 (2) ÅT = 292 K
c = 7.979 (7) Å0.40 × 0.30 × 0.20 mm
β = 100.11 (5)°
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
Rint = 0.027
3304 measured reflections2 standard reflections every 120 min
1932 independent reflections intensity decay: 1%
1736 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
1932 reflectionsΔρmin = 0.38 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.43820 (3)0.46630 (6)0.23711 (6)0.0298 (2)
O10.39492 (10)0.5342 (2)0.3800 (2)0.0503 (5)
H10.42780.54770.46740.075*
O20.44438 (12)0.60754 (19)0.11002 (19)0.0462 (5)
H20.45620.69140.16340.069*
O30.52069 (9)0.40766 (18)0.31601 (17)0.0346 (4)
O40.38537 (10)0.34256 (19)0.13619 (18)0.0408 (4)
Cl10.95781 (6)0.6138 (3)0.2672 (2)0.1564 (8)
N10.65051 (11)0.5738 (2)0.1985 (2)0.0342 (4)
H1A0.61300.50260.21380.051*
H1B0.64350.60230.08930.051*
H1C0.64680.66090.26210.051*
C10.72967 (14)0.5010 (3)0.2480 (3)0.0392 (5)
C20.79647 (15)0.5918 (4)0.2317 (3)0.0524 (7)
C30.86992 (18)0.5110 (6)0.2839 (5)0.0784 (10)
C40.8752 (2)0.3579 (6)0.3475 (6)0.0954 (13)
H40.92520.31020.38050.114*
C50.8074 (2)0.2742 (5)0.3631 (6)0.0875 (12)
H50.81100.17010.40780.105*
C60.73348 (18)0.3460 (3)0.3116 (4)0.0617 (8)
H60.68670.29000.31990.074*
C70.7899 (2)0.7623 (5)0.1667 (5)0.0807 (11)
H7A0.74320.81230.19660.121*
H7B0.78560.76190.04510.121*
H7C0.83680.82190.21680.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0413 (4)0.0243 (3)0.0221 (3)0.0007 (2)0.0007 (2)0.00082 (18)
O10.0444 (9)0.0731 (13)0.0312 (9)0.0113 (9)0.0005 (7)0.0125 (8)
O20.0800 (12)0.0248 (8)0.0297 (8)0.0045 (8)0.0020 (8)0.0030 (6)
O30.0448 (9)0.0301 (8)0.0276 (7)0.0037 (6)0.0023 (6)0.0020 (6)
O40.0548 (9)0.0355 (9)0.0285 (7)0.0119 (7)0.0026 (7)0.0004 (6)
Cl10.0485 (6)0.2330 (19)0.1867 (15)0.0312 (8)0.0178 (7)0.0464 (14)
N10.0391 (10)0.0352 (9)0.0272 (8)0.0005 (8)0.0029 (7)0.0024 (7)
C10.0416 (12)0.0449 (12)0.0305 (11)0.0019 (10)0.0048 (9)0.0055 (9)
C20.0451 (14)0.0698 (18)0.0419 (13)0.0073 (13)0.0061 (11)0.0006 (13)
C30.0414 (15)0.118 (3)0.075 (2)0.0034 (18)0.0094 (15)0.001 (2)
C40.060 (2)0.113 (3)0.109 (3)0.035 (2)0.005 (2)0.011 (3)
C50.072 (2)0.066 (2)0.120 (3)0.0236 (18)0.005 (2)0.017 (2)
C60.0540 (15)0.0458 (15)0.083 (2)0.0069 (13)0.0066 (14)0.0043 (14)
C70.075 (2)0.085 (2)0.079 (2)0.0277 (19)0.0063 (18)0.0238 (19)
Geometric parameters (Å, º) top
P1—O41.4980 (16)C1—C21.383 (4)
P1—O31.5087 (17)C2—C31.409 (4)
P1—O21.5626 (17)C2—C71.500 (5)
P1—O11.5641 (19)C3—C41.361 (6)
O1—H10.8200C4—C51.365 (6)
O2—H20.8200C4—H40.9300
Cl1—C31.740 (4)C5—C61.382 (4)
N1—C11.460 (3)C5—H50.9300
N1—H1A0.8900C6—H60.9300
N1—H1B0.8900C7—H7A0.9600
N1—H1C0.8900C7—H7B0.9600
C1—C61.377 (4)C7—H7C0.9600
O4—P1—O3115.27 (9)C3—C2—C7123.8 (3)
O4—P1—O2105.31 (10)C4—C3—C2123.3 (3)
O3—P1—O2110.39 (10)C4—C3—Cl1118.8 (3)
O4—P1—O1108.96 (11)C2—C3—Cl1117.9 (3)
O3—P1—O1109.25 (10)C3—C4—C5120.3 (3)
O2—P1—O1107.34 (11)C3—C4—H4119.9
P1—O1—H1109.5C5—C4—H4119.9
P1—O2—H2109.5C4—C5—C6119.2 (4)
C1—N1—H1A109.5C4—C5—H5120.4
C1—N1—H1B109.5C6—C5—H5120.4
H1A—N1—H1B109.5C1—C6—C5119.4 (3)
C1—N1—H1C109.5C1—C6—H6120.3
H1A—N1—H1C109.5C5—C6—H6120.3
H1B—N1—H1C109.5C2—C7—H7A109.5
C6—C1—C2123.7 (3)C2—C7—H7B109.5
C6—C1—N1117.7 (2)H7A—C7—H7B109.5
C2—C1—N1118.6 (2)C2—C7—H7C109.5
C1—C2—C3114.2 (3)H7A—C7—H7C109.5
C1—C2—C7122.1 (3)H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.832.634 (3)166
O2—H2···O3ii0.821.832.596 (2)154
N1—H1A···O30.892.042.886 (3)158
N1—H1B···O4iii0.891.842.722 (3)172
N1—H1C···O4ii0.891.842.708 (3)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H9ClN+·H2PO4
Mr239.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)16.942 (6), 8.272 (2), 7.979 (7)
β (°) 100.11 (5)
V3)1100.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3304, 1932, 1736
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.08
No. of reflections1932
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.832.634 (3)165.8
O2—H2···O3ii0.821.832.596 (2)154.3
N1—H1A···O30.892.042.886 (3)157.5
N1—H1B···O4iii0.891.842.722 (3)172.4
N1—H1C···O4ii0.891.842.708 (3)166.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

References

First citationAdams, J. M. (1977). Acta Cryst. B33, 1513–1515.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChtioui, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 43–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids , Vol. 54. New York: Elsevier.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHebert, H. (1978). Acta Cryst. B34, 611–615.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x177–x178.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds