organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4a-Di­methyl-6-methyl­ene-5-(5,5,6,6-tetra­cyano-2-methyl­cyclo­hex-2-enylmeth­yl)deca­hydro­naphthalene-1-carboxylic acid: a trans-communic acid derivative

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, Equipe de Chimie des Substances Naturelles, Département de Chimie, Faculté des Sciences Semlalia, BP 2390 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 18 September 2007; accepted 10 January 2008; online 18 January 2008)

In the search for cancer chemopreventive agents, we have studied the Diels–Alder reaction of trans-communic acid with tetra­cyano­ethyl­ene in the presence of SiO2 as catalyst. The title cycloadduct, C26H30N4O2, was obtained in 75% yield. The mol­ecules are arranged in pairs through O—H⋯O hydrogen bonds, forming an R22(8) ring motif. Both the fused cyclohexyl rings adopt a chair conformation, whereas the nonfused ring adopts a half-chair conformation.

Related literature

For literature on anti-tumour activity, see: Bouhal et al. (1988[Bouhal, K., Meynadier, J. M., Peyron, J. L., Peyron, L., Marion, J. P., Bonetti, G. & Meynadier, J. (1988). Le Cade en Dermatologie, Parfums, Cosmétiques et Aromes, 83, 73-82.]); Iwamoto et al. (2001[Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matasunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911-1921.]). For structural analyses, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the treatment of disordered solvent, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N4O2

  • Mr = 430.54

  • Monoclinic, C 2

  • a = 30.664 (4) Å

  • b = 11.8233 (19) Å

  • c = 7.1857 (10) Å

  • β = 93.260 (12)°

  • V = 2600.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 180 (2) K

  • 0.52 × 0.08 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire-I diffractometer

  • Absorption correction: none

  • 5114 measured reflections

  • 2615 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 0.82

  • 2615 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O9′i 0.84 1.79 2.631 (3) 178
Symmetry code: (i) -x+1, y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Juniperus oxycedrus has been used in traditional folk medicine for the treatment of chronic eczema and other several skin diseases (Bouhal et al., 1988). Trans communic acid 1 is one of the compounds which were isolated from Juniperusoxycedrus and known by its moderate anti-tumor activity (Iwamoto et al., 2001). In the search for cancer chemo preventive agents with strong activity, we have studied the Diels-Alder reaction of trans communic acid 1 with tetracyanoethylene 2 in the presence of SiO2 as catalyst (Fig.1). One cycloadduct 3 was obtained in 75% yield.

Its structure was identified as 1,4a-Dimethyl-6-methylene-5-(5,5,6,6-tetracyano-2-methylcyclohex-2-εnylmethyl)-decahydronaphthalene-1-carboxylic acid using spectral methods including 1H and 13C NMR and confirmed by an X-ray crystallographic analysis. The 1H NMR spectrum of 3 exhibits three methyl singlets at 1.96, 1.29 and 0.69 p.p.m., a triplet (J=3 Hz, at 5.57ppm) due to proton H-3' and two singlets (at 4.50 and 5.08 p.p.m.) assigned to methylenic protons at 13 position. The 13C NMR spectra reveals twenty six signals including specially a carbonyl group at 183.36 p.p.m. and four cyano group signals at 109.19; 110.07; 110.94 and 111.54ppm.

The molecule is build up by two fused six cyclohexyl rings linked linked through a CH2 spacer to a tetracyano-2-methylcyclohexyl ring (Fig. 2). The fused cyclohexyl rings, C1 to C8a and C4A to C8A, adopt a chair conformation as indicated by the puckering parameters [Q= 0.533 (6)°, 0.576 (6)° and θ= 0. 0(6)°, 0.4 (6)°, Cremer & Pople, (1975)]. The non fused cyclohexyl ring adopt a half-chair conformation[Q= 0.510 (6)° and θ= 50.7 (5)°]. The occurrence of O—H···O hydrogen bonds form pairs of molecules through a R22(8) ring motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 3).

Related literature top

For literature on anti-tumour activity, see: Bouhal et al. (1988); Iwamoto et al. (2001). For structural analyses, see: Etter et al. (1990); Bernstein et al. (1995); Cremer & Pople (1975). For related literature, see: Spek (2003).

Experimental top

To a solution of Compound 1(1 g, 2.5 mmol) in 20 ml of dichloromethane, was added tetracyanoethylene (TCNE)(0.32 g, 2.5 mmol). The mixture was refluxed for 72 h. After cooling, the solvent was removed by evaporation under reduced pressure. The obtained residue was purified by chromatography on silica gel column (eluent: hexane/ethyl acetate 90/10), then the isolated product was recrystallized from ethyl acetate to give compound 3(750 mg, 75%).

Colourless crystal, mp=208–210°C (ethyl acetate). 1H NMR (300 MHz, CDCl3)δ (p.p.m.): 5.57 (t, 1H, J=4.45 Hz); 5.08 (s, 1H); 4.50 (s,1H); 3.28 (br d,1H, J=11.5 Hz); 3.00 (m, 2H); 2.48 (br d, 1H, J=11.5 Hz); 2.29–1.96 (m, 5H); 1.92 (s, 3H); 1.81 (m, 3H); 1.62 (m, 1H); 1.45 (dd, 1H, J=12.21 and 2.60); 1.29 (s, 3H); 1.26 (m, 2H); 1.15 (m, 1H); 0.69 (s, 3H). 13C NMR δ (p.p.m.) CDCl3: 12.64 C11, 19.85 C3, 21.78 C7, 25.59 C8, 26.13 C4, 29.01 C9, 31.75 C12, 37.70 C2, 38.07 C4', 38.58 C7, 39.56 C4a, 41.37 C6', 41.74 C1', 43.41 C5', 44.29 C1, 51.63 C5, 56.47 C8a, 107.59 C13, 109.19 C8', 110.07 C9', 110.94 C10', 111.54 C11', 116.37 C3', 135.27 C6, 147.14 C2', 183.36 C10

Refinement top

All H atoms attached to C atoms and 0 atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.99 Å (methylene), 0.98(methyl), 1.0Å (methine) and O—H = 0.84Å with Uiso(H) = 1.2Ueq(aromatic, methine, methylene) and Uiso(H) = 1.5Ueq(methyl & hydroxyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed. Some residual electron density were difficult to modelize and therefore, the SQUEEZE function of PLATON (Spek, 2003) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are two cavities of 158 Å3 per unit cell. PLATON estimated that each cavity contains about 11 electrons. Owing to the solvent used for crystallization, one may estimate that the voids contain 0.25 ethyl acetate molecule.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Scheme showing the synthetic pathway for the title compound.
[Figure 2] Fig. 2. Molecular view of compound 3 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Partial packing view showing pair of molecules connected by O—H···O hydrogen bonds and forming a R22(8) ring motif. Hydrogen bonds are shown as dashed lines. Hydrogen not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) 1 - x, y, 1 - z].
1,4a-Dimethyl-6-methylene-5-(5,5,6,6-tetracyano-2-methylcyclohex-2- enylmethyl)decahydronaphthalene-1-carboxylic acid ? top
Crystal data top
C26H30N4O2F(000) = 920
Mr = 430.54Dx = 1.099 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 907 reflections
a = 30.664 (4) Åθ = 3.1–26.4°
b = 11.8233 (19) ŵ = 0.07 mm1
c = 7.1857 (10) ÅT = 180 K
β = 93.260 (12)°Needle, colorless
V = 2600.9 (6) Å30.52 × 0.08 × 0.07 mm
Z = 4
Data collection top
Oxford-Diffraction Xcalibur Sapphire-I
diffractometer
1302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
Detector resolution: 8.2632 pixels mm-1h = 2338
ω and ϕ scansk = 1114
5114 measured reflectionsl = 78
2615 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max = 0.003
293 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C26H30N4O2V = 2600.9 (6) Å3
Mr = 430.54Z = 4
Monoclinic, C2Mo Kα radiation
a = 30.664 (4) ŵ = 0.07 mm1
b = 11.8233 (19) ÅT = 180 K
c = 7.1857 (10) Å0.52 × 0.08 × 0.07 mm
β = 93.260 (12)°
Data collection top
Oxford-Diffraction Xcalibur Sapphire-I
diffractometer
1302 reflections with I > 2σ(I)
5114 measured reflectionsRint = 0.037
2615 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.085H-atom parameters constrained
S = 0.82Δρmax = 0.13 e Å3
2615 reflectionsΔρmin = 0.12 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59538 (10)0.4362 (3)0.2817 (5)0.0536 (10)
C1'0.64958 (9)0.0975 (3)0.2534 (4)0.0364 (9)
H1'0.62840.12630.15370.044*
C2'0.65560 (10)0.1895 (3)0.3989 (4)0.0398 (9)
C20.63385 (10)0.4539 (3)0.4201 (6)0.0623 (11)
H2A0.66080.46050.35090.075*
H2B0.62980.52620.48640.075*
C3'0.69097 (10)0.2504 (3)0.4250 (4)0.0507 (10)
H3'0.69140.30520.52170.061*
C30.63991 (10)0.3605 (3)0.5617 (5)0.0592 (11)
H3A0.61470.35970.64160.071*
H3B0.66650.37570.64240.071*
C40.64403 (10)0.2457 (3)0.4706 (5)0.0495 (10)
H4A0.64580.18690.56890.059*
H4B0.67160.24330.40550.059*
C4'0.73066 (10)0.2407 (3)0.3154 (5)0.0529 (10)
H4'A0.74270.31700.29380.063*
H4'B0.75320.19600.38650.063*
C4A0.60575 (9)0.2174 (3)0.3301 (4)0.0361 (9)
C50.61843 (9)0.1098 (3)0.2159 (4)0.0351 (8)
H50.64570.12940.15290.042*
C5'0.71920 (10)0.1833 (3)0.1284 (5)0.0481 (10)
C60.58379 (11)0.0870 (4)0.0639 (5)0.0494 (10)
C6'0.69273 (9)0.0707 (3)0.1609 (5)0.0417 (9)
C7'0.61661 (10)0.2127 (3)0.5115 (5)0.0564 (11)
H7'A0.62190.28110.58660.085*
H7'B0.59070.22390.42720.085*
H7'C0.61180.14840.59390.085*
C70.57720 (12)0.1836 (4)0.0693 (5)0.0692 (13)
H7A0.55350.16520.16360.083*
H7B0.60430.19660.13500.083*
C8'0.69222 (12)0.2582 (4)0.0066 (6)0.0508 (10)
C80.56546 (11)0.2901 (3)0.0358 (5)0.0593 (12)
H8A0.53660.27970.08870.071*
H8B0.56310.35450.05230.071*
C8A0.59952 (10)0.3178 (3)0.1931 (5)0.0472 (10)
H80.62770.32130.12970.057*
C90.55363 (10)0.4563 (3)0.3803 (6)0.0470 (10)
C9'0.75865 (11)0.1575 (4)0.0316 (5)0.0602 (11)
C10'0.72097 (11)0.0021 (3)0.2844 (6)0.0548 (11)
C100.59748 (14)0.5294 (3)0.1310 (6)0.0858 (16)
H10A0.57100.52660.04820.129*
H10B0.62310.51700.05810.129*
H10C0.59970.60370.19130.129*
C110.56460 (9)0.1932 (3)0.4331 (4)0.0438 (9)
H11A0.57000.12980.51900.066*
H11B0.54060.17390.34280.066*
H11C0.55670.26050.50350.066*
C11'0.68511 (11)0.0140 (3)0.0200 (6)0.0486 (10)
C120.62924 (10)0.0071 (3)0.3388 (4)0.0403 (9)
H12A0.60190.01720.39370.048*
H12B0.64930.03260.44310.048*
C130.55899 (11)0.0039 (4)0.0508 (5)0.0696 (13)
H13A0.53640.00900.04480.084*
H13B0.56370.06420.13680.084*
N8'0.67137 (11)0.3154 (3)0.0892 (5)0.0749 (11)
N9'0.78989 (10)0.1379 (4)0.0408 (5)0.0974 (14)
N10'0.74280 (11)0.0563 (3)0.3805 (5)0.0864 (13)
N11'0.68067 (11)0.0254 (3)0.1637 (5)0.0767 (11)
O90.51784 (7)0.4467 (2)0.2691 (3)0.0616 (8)
H90.49580.45890.33030.092*
O9'0.55236 (7)0.4807 (2)0.5443 (4)0.0569 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.056 (3)0.065 (3)0.0049 (18)0.023 (2)0.014 (2)
C1'0.0289 (17)0.047 (2)0.034 (2)0.0031 (15)0.0035 (16)0.0048 (18)
C2'0.043 (2)0.044 (2)0.032 (2)0.0001 (17)0.0037 (15)0.0009 (19)
C20.0362 (19)0.046 (3)0.106 (3)0.0033 (18)0.020 (2)0.002 (3)
C3'0.057 (2)0.060 (3)0.035 (2)0.008 (2)0.0042 (18)0.008 (2)
C30.041 (2)0.056 (3)0.079 (3)0.0013 (19)0.0142 (19)0.016 (3)
C40.0387 (19)0.058 (3)0.051 (2)0.0003 (18)0.0047 (16)0.001 (2)
C4'0.047 (2)0.071 (3)0.041 (2)0.0157 (19)0.0008 (17)0.009 (2)
C4A0.0301 (17)0.046 (2)0.033 (2)0.0065 (15)0.0034 (15)0.0118 (18)
C50.0336 (18)0.045 (2)0.027 (2)0.0009 (15)0.0025 (15)0.0057 (19)
C5'0.0338 (19)0.065 (3)0.046 (2)0.0010 (19)0.0073 (17)0.000 (2)
C60.042 (2)0.071 (3)0.035 (2)0.011 (2)0.0020 (18)0.005 (2)
C6'0.0365 (18)0.049 (2)0.040 (2)0.0049 (17)0.0040 (16)0.002 (2)
C7'0.053 (2)0.071 (3)0.046 (2)0.0026 (18)0.0139 (17)0.016 (2)
C70.074 (3)0.105 (4)0.029 (2)0.036 (2)0.0067 (18)0.007 (3)
C8'0.053 (3)0.057 (3)0.043 (3)0.005 (2)0.013 (2)0.009 (2)
C80.064 (2)0.086 (3)0.028 (2)0.033 (2)0.0061 (18)0.014 (2)
C8A0.0355 (18)0.065 (3)0.043 (2)0.0142 (17)0.0170 (16)0.009 (2)
C90.039 (2)0.043 (2)0.059 (3)0.0040 (16)0.006 (2)0.020 (2)
C9'0.049 (2)0.082 (3)0.050 (3)0.006 (2)0.0087 (19)0.001 (2)
C10'0.039 (2)0.060 (3)0.067 (3)0.0105 (19)0.013 (2)0.007 (2)
C100.100 (3)0.060 (3)0.104 (4)0.018 (2)0.059 (3)0.047 (3)
C110.042 (2)0.060 (3)0.030 (2)0.0030 (17)0.0069 (16)0.001 (2)
C11'0.052 (2)0.046 (3)0.049 (3)0.0067 (18)0.017 (2)0.010 (2)
C120.0415 (18)0.048 (2)0.031 (2)0.0010 (16)0.0030 (15)0.0012 (18)
C130.046 (2)0.099 (4)0.062 (3)0.011 (3)0.015 (2)0.004 (3)
N8'0.089 (3)0.084 (3)0.053 (2)0.013 (2)0.016 (2)0.005 (2)
N9'0.057 (2)0.143 (4)0.095 (3)0.001 (2)0.032 (2)0.004 (3)
N10'0.063 (2)0.101 (3)0.095 (3)0.031 (2)0.008 (2)0.042 (3)
N11'0.094 (3)0.088 (3)0.051 (2)0.023 (2)0.028 (2)0.019 (2)
O90.0462 (14)0.092 (2)0.0471 (15)0.0210 (14)0.0064 (12)0.0007 (16)
O9'0.0444 (13)0.075 (2)0.0519 (16)0.0021 (12)0.0105 (13)0.0057 (16)
Geometric parameters (Å, º) top
C1—C21.513 (5)C5'—C6'1.584 (5)
C1—C91.517 (5)C6—C131.316 (5)
C1—C8A1.546 (5)C6—C71.497 (5)
C1—C101.549 (5)C6'—C11'1.470 (5)
C1'—C2'1.513 (4)C6'—C10'1.480 (5)
C1'—C121.529 (4)C7'—H7'A0.9800
C1'—C6'1.547 (4)C7'—H7'B0.9800
C1'—H1'1.0000C7'—H7'C0.9800
C2'—C3'1.306 (4)C7—C81.521 (5)
C2'—C7'1.506 (4)C7—H7A0.9900
C2—C31.506 (5)C7—H7B0.9900
C2—H2A0.9900C8'—N8'1.136 (5)
C2—H2B0.9900C8—C8A1.530 (5)
C3'—C4'1.491 (4)C8—H8A0.9900
C3'—H3'0.9500C8—H8B0.9900
C3—C41.516 (5)C8A—H81.0000
C3—H3A0.9900C9—O9'1.216 (4)
C3—H3B0.9900C9—O91.325 (4)
C4—C4A1.541 (4)C9'—N9'1.139 (4)
C4—H4A0.9900C10'—N10'1.133 (4)
C4—H4B0.9900C10—H10A0.9800
C4'—C5'1.528 (5)C10—H10B0.9800
C4'—H4'A0.9900C10—H10C0.9800
C4'—H4'B0.9900C11—H11A0.9800
C4A—C111.526 (4)C11—H11B0.9800
C4A—C8A1.547 (4)C11—H11C0.9800
C4A—C51.574 (4)C11'—N11'1.134 (4)
C5—C61.504 (4)C12—H12A0.9900
C5—C121.527 (4)C12—H12B0.9900
C5—H51.0000C13—H13A0.9500
C5'—C9'1.462 (5)C13—H13B0.9500
C5'—C8'1.466 (5)O9—H90.8400
C2—C1—C9108.6 (3)C13—C6—C5125.4 (4)
C2—C1—C8A108.5 (3)C7—C6—C5113.1 (3)
C9—C1—C8A115.2 (3)C11'—C6'—C10'108.8 (3)
C2—C1—C10107.4 (3)C11'—C6'—C1'112.1 (3)
C9—C1—C10106.5 (3)C10'—C6'—C1'110.3 (3)
C8A—C1—C10110.4 (3)C11'—C6'—C5'108.0 (3)
C2'—C1'—C12109.9 (2)C10'—C6'—C5'106.9 (3)
C2'—C1'—C6'111.7 (2)C1'—C6'—C5'110.5 (3)
C12—C1'—C6'112.7 (3)C2'—C7'—H7'A109.5
C2'—C1'—H1'107.4C2'—C7'—H7'B109.5
C12—C1'—H1'107.4H7'A—C7'—H7'B109.5
C6'—C1'—H1'107.4C2'—C7'—H7'C109.5
C3'—C2'—C7'120.0 (3)H7'A—C7'—H7'C109.5
C3'—C2'—C1'124.3 (3)H7'B—C7'—H7'C109.5
C7'—C2'—C1'115.7 (3)C6—C7—C8110.0 (3)
C3—C2—C1113.8 (3)C6—C7—H7A109.7
C3—C2—H2A108.8C8—C7—H7A109.7
C1—C2—H2A108.8C6—C7—H7B109.7
C3—C2—H2B108.8C8—C7—H7B109.7
C1—C2—H2B108.8H7A—C7—H7B108.2
H2A—C2—H2B107.7N8'—C8'—C5'179.3 (4)
C2'—C3'—C4'125.3 (3)C7—C8—C8A111.9 (3)
C2'—C3'—H3'117.3C7—C8—H8A109.2
C4'—C3'—H3'117.3C8A—C8—H8A109.2
C2—C3—C4112.0 (3)C7—C8—H8B109.2
C2—C3—H3A109.2C8A—C8—H8B109.2
C4—C3—H3A109.2H8A—C8—H8B107.9
C2—C3—H3B109.2C8—C8A—C4A111.1 (3)
C4—C3—H3B109.2C8—C8A—C1115.4 (3)
H3A—C3—H3B107.9C4A—C8A—C1116.3 (3)
C3—C4—C4A113.5 (3)C8—C8A—H8104.1
C3—C4—H4A108.9C4A—C8A—H8104.1
C4A—C4—H4A108.9C1—C8A—H8104.1
C3—C4—H4B108.9O9'—C9—O9122.3 (3)
C4A—C4—H4B108.9O9'—C9—C1124.4 (3)
H4A—C4—H4B107.7O9—C9—C1113.4 (3)
C3'—C4'—C5'110.2 (3)N9'—C9'—C5'178.7 (4)
C3'—C4'—H4'A109.6N10'—C10'—C6'178.9 (5)
C5'—C4'—H4'A109.6C1—C10—H10A109.5
C3'—C4'—H4'B109.6C1—C10—H10B109.5
C5'—C4'—H4'B109.6H10A—C10—H10B109.5
H4'A—C4'—H4'B108.1C1—C10—H10C109.5
C11—C4A—C4110.1 (3)H10A—C10—H10C109.5
C11—C4A—C8A112.1 (2)H10B—C10—H10C109.5
C4—C4A—C8A108.2 (3)C4A—C11—H11A109.5
C11—C4A—C5109.7 (3)C4A—C11—H11B109.5
C4—C4A—C5108.4 (2)H11A—C11—H11B109.5
C8A—C4A—C5108.3 (2)C4A—C11—H11C109.5
C6—C5—C12113.5 (3)H11A—C11—H11C109.5
C6—C5—C4A109.8 (3)H11B—C11—H11C109.5
C12—C5—C4A113.2 (2)N11'—C11'—C6'176.2 (4)
C6—C5—H5106.6C5—C12—C1'119.4 (2)
C12—C5—H5106.6C5—C12—H12A107.5
C4A—C5—H5106.6C1'—C12—H12A107.5
C9'—C5'—C8'107.2 (3)C5—C12—H12B107.5
C9'—C5'—C4'110.8 (3)C1'—C12—H12B107.5
C8'—C5'—C4'110.5 (3)H12A—C12—H12B107.0
C9'—C5'—C6'109.9 (3)C6—C13—H13A120.0
C8'—C5'—C6'108.6 (3)C6—C13—H13B120.0
C4'—C5'—C6'109.7 (3)H13A—C13—H13B120.0
C13—C6—C7121.4 (4)C9—O9—H9109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O9i0.841.792.631 (3)178
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H30N4O2
Mr430.54
Crystal system, space groupMonoclinic, C2
Temperature (K)180
a, b, c (Å)30.664 (4), 11.8233 (19), 7.1857 (10)
β (°) 93.260 (12)
V3)2600.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.08 × 0.07
Data collection
DiffractometerOxford-Diffraction Xcalibur Sapphire-I
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5114, 2615, 1302
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 0.82
No. of reflections2615
No. of parameters293
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O9'i0.841.792.631 (3)177.7
Symmetry code: (i) x+1, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBouhal, K., Meynadier, J. M., Peyron, J. L., Peyron, L., Marion, J. P., Bonetti, G. & Meynadier, J. (1988). Le Cade en Dermatologie, Parfums, Cosmétiques et Aromes, 83, 73–82.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matasunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911–1921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds