organic compounds
1,4a-Dimethyl-6-methylene-5-(5,5,6,6-tetracyano-2-methylcyclohex-2-enylmethyl)decahydronaphthalene-1-carboxylic acid: a trans-communic acid derivative
aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, Equipe de Chimie des Substances Naturelles, Département de Chimie, Faculté des Sciences Semlalia, BP 2390 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: daran@lcc-toulouse.fr
In the search for cancer chemopreventive agents, we have studied the Diels–Alder reaction of trans-communic acid with tetracyanoethylene in the presence of SiO2 as catalyst. The title cycloadduct, C26H30N4O2, was obtained in 75% yield. The molecules are arranged in pairs through O—H⋯O hydrogen bonds, forming an R22(8) ring motif. Both the fused cyclohexyl rings adopt a chair conformation, whereas the nonfused ring adopts a half-chair conformation.
Related literature
For literature on anti-tumour activity, see: Bouhal et al. (1988); Iwamoto et al. (2001). For structural analyses, see: Etter et al. (1990); Bernstein et al. (1995); Cremer & Pople (1975). For the treatment of disordered solvent, see: Spek (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808001086/er2042sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808001086/er2042Isup2.hkl
To a solution of Compound 1(1 g, 2.5 mmol) in 20 ml of dichloromethane, was added tetracyanoethylene (TCNE)(0.32 g, 2.5 mmol). The mixture was refluxed for 72 h. After cooling, the solvent was removed by evaporation under reduced pressure. The obtained residue was purified by
on silica gel column (eluent: hexane/ethyl acetate 90/10), then the isolated product was recrystallized from ethyl acetate to give compound 3(750 mg, 75%).Colourless crystal, mp=208–210°C (ethyl acetate). 1H NMR (300 MHz, CDCl3)δ (p.p.m.): 5.57 (t, 1H, J=4.45 Hz); 5.08 (s, 1H); 4.50 (s,1H); 3.28 (br d,1H, J=11.5 Hz); 3.00 (m, 2H); 2.48 (br d, 1H, J=11.5 Hz); 2.29–1.96 (m, 5H); 1.92 (s, 3H); 1.81 (m, 3H); 1.62 (m, 1H); 1.45 (dd, 1H, J=12.21 and 2.60); 1.29 (s, 3H); 1.26 (m, 2H); 1.15 (m, 1H); 0.69 (s, 3H). 13C NMR δ (p.p.m.) CDCl3: 12.64 C11, 19.85 C3, 21.78 C7, 25.59 C8, 26.13 C4, 29.01 C9, 31.75 C12, 37.70 C2, 38.07 C4', 38.58 C7, 39.56 C4a, 41.37 C6', 41.74 C1', 43.41 C5', 44.29 C1, 51.63 C5, 56.47 C8a, 107.59 C13, 109.19 C8', 110.07 C9', 110.94 C10', 111.54 C11', 116.37 C3', 135.27 C6, 147.14 C2', 183.36 C10
All H atoms attached to C atoms and 0 atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.99 Å (methylene), 0.98(methyl), 1.0Å (methine) and O—H = 0.84Å with Uiso(H) = 1.2Ueq(aromatic, methine, methylene) and Uiso(H) = 1.5Ueq(methyl & hydroxyl). In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed. Some residual electron density were difficult to modelize and therefore, the SQUEEZE function of PLATON (Spek, 2003) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final There are two cavities of 158 Å3 per PLATON estimated that each cavity contains about 11 electrons. Owing to the solvent used for crystallization, one may estimate that the voids contain 0.25 ethyl acetate molecule.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C26H30N4O2 | F(000) = 920 |
Mr = 430.54 | Dx = 1.099 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 907 reflections |
a = 30.664 (4) Å | θ = 3.1–26.4° |
b = 11.8233 (19) Å | µ = 0.07 mm−1 |
c = 7.1857 (10) Å | T = 180 K |
β = 93.260 (12)° | Needle, colorless |
V = 2600.9 (6) Å3 | 0.52 × 0.08 × 0.07 mm |
Z = 4 |
Oxford-Diffraction Xcalibur Sapphire-I diffractometer | 1302 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
Detector resolution: 8.2632 pixels mm-1 | h = −23→38 |
ω and ϕ scans | k = −11→14 |
5114 measured reflections | l = −7→8 |
2615 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.82 | w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3 |
2615 reflections | (Δ/σ)max = 0.003 |
293 parameters | Δρmax = 0.13 e Å−3 |
1 restraint | Δρmin = −0.12 e Å−3 |
C26H30N4O2 | V = 2600.9 (6) Å3 |
Mr = 430.54 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 30.664 (4) Å | µ = 0.07 mm−1 |
b = 11.8233 (19) Å | T = 180 K |
c = 7.1857 (10) Å | 0.52 × 0.08 × 0.07 mm |
β = 93.260 (12)° |
Oxford-Diffraction Xcalibur Sapphire-I diffractometer | 1302 reflections with I > 2σ(I) |
5114 measured reflections | Rint = 0.037 |
2615 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 1 restraint |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.82 | Δρmax = 0.13 e Å−3 |
2615 reflections | Δρmin = −0.12 e Å−3 |
293 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.59538 (10) | 0.4362 (3) | 0.2817 (5) | 0.0536 (10) | |
C1' | 0.64958 (9) | −0.0975 (3) | 0.2534 (4) | 0.0364 (9) | |
H1' | 0.6284 | −0.1263 | 0.1537 | 0.044* | |
C2' | 0.65560 (10) | −0.1895 (3) | 0.3989 (4) | 0.0398 (9) | |
C2 | 0.63385 (10) | 0.4539 (3) | 0.4201 (6) | 0.0623 (11) | |
H2A | 0.6608 | 0.4605 | 0.3509 | 0.075* | |
H2B | 0.6298 | 0.5262 | 0.4864 | 0.075* | |
C3' | 0.69097 (10) | −0.2504 (3) | 0.4250 (4) | 0.0507 (10) | |
H3' | 0.6914 | −0.3052 | 0.5217 | 0.061* | |
C3 | 0.63991 (10) | 0.3605 (3) | 0.5617 (5) | 0.0592 (11) | |
H3A | 0.6147 | 0.3597 | 0.6416 | 0.071* | |
H3B | 0.6665 | 0.3757 | 0.6424 | 0.071* | |
C4 | 0.64403 (10) | 0.2457 (3) | 0.4706 (5) | 0.0495 (10) | |
H4A | 0.6458 | 0.1869 | 0.5689 | 0.059* | |
H4B | 0.6716 | 0.2433 | 0.4055 | 0.059* | |
C4' | 0.73066 (10) | −0.2407 (3) | 0.3154 (5) | 0.0529 (10) | |
H4'A | 0.7427 | −0.3170 | 0.2938 | 0.063* | |
H4'B | 0.7532 | −0.1960 | 0.3865 | 0.063* | |
C4A | 0.60575 (9) | 0.2174 (3) | 0.3301 (4) | 0.0361 (9) | |
C5 | 0.61843 (9) | 0.1098 (3) | 0.2159 (4) | 0.0351 (8) | |
H5 | 0.6457 | 0.1294 | 0.1529 | 0.042* | |
C5' | 0.71920 (10) | −0.1833 (3) | 0.1284 (5) | 0.0481 (10) | |
C6 | 0.58379 (11) | 0.0870 (4) | 0.0639 (5) | 0.0494 (10) | |
C6' | 0.69273 (9) | −0.0707 (3) | 0.1609 (5) | 0.0417 (9) | |
C7' | 0.61661 (10) | −0.2127 (3) | 0.5115 (5) | 0.0564 (11) | |
H7'A | 0.6219 | −0.2811 | 0.5866 | 0.085* | |
H7'B | 0.5907 | −0.2239 | 0.4272 | 0.085* | |
H7'C | 0.6118 | −0.1484 | 0.5939 | 0.085* | |
C7 | 0.57720 (12) | 0.1836 (4) | −0.0693 (5) | 0.0692 (13) | |
H7A | 0.5535 | 0.1652 | −0.1636 | 0.083* | |
H7B | 0.6043 | 0.1966 | −0.1350 | 0.083* | |
C8' | 0.69222 (12) | −0.2582 (4) | 0.0066 (6) | 0.0508 (10) | |
C8 | 0.56546 (11) | 0.2901 (3) | 0.0358 (5) | 0.0593 (12) | |
H8A | 0.5366 | 0.2797 | 0.0887 | 0.071* | |
H8B | 0.5631 | 0.3545 | −0.0523 | 0.071* | |
C8A | 0.59952 (10) | 0.3178 (3) | 0.1931 (5) | 0.0472 (10) | |
H8 | 0.6277 | 0.3213 | 0.1297 | 0.057* | |
C9 | 0.55363 (10) | 0.4563 (3) | 0.3803 (6) | 0.0470 (10) | |
C9' | 0.75865 (11) | −0.1575 (4) | 0.0316 (5) | 0.0602 (11) | |
C10' | 0.72097 (11) | 0.0021 (3) | 0.2844 (6) | 0.0548 (11) | |
C10 | 0.59748 (14) | 0.5294 (3) | 0.1310 (6) | 0.0858 (16) | |
H10A | 0.5710 | 0.5266 | 0.0482 | 0.129* | |
H10B | 0.6231 | 0.5170 | 0.0581 | 0.129* | |
H10C | 0.5997 | 0.6037 | 0.1913 | 0.129* | |
C11 | 0.56460 (9) | 0.1932 (3) | 0.4331 (4) | 0.0438 (9) | |
H11A | 0.5700 | 0.1298 | 0.5190 | 0.066* | |
H11B | 0.5406 | 0.1739 | 0.3428 | 0.066* | |
H11C | 0.5567 | 0.2605 | 0.5035 | 0.066* | |
C11' | 0.68511 (11) | −0.0140 (3) | −0.0200 (6) | 0.0486 (10) | |
C12 | 0.62924 (10) | 0.0071 (3) | 0.3388 (4) | 0.0403 (9) | |
H12A | 0.6019 | −0.0172 | 0.3937 | 0.048* | |
H12B | 0.6493 | 0.0326 | 0.4431 | 0.048* | |
C13 | 0.55899 (11) | −0.0039 (4) | 0.0508 (5) | 0.0696 (13) | |
H13A | 0.5364 | −0.0090 | −0.0448 | 0.084* | |
H13B | 0.5637 | −0.0642 | 0.1368 | 0.084* | |
N8' | 0.67137 (11) | −0.3154 (3) | −0.0892 (5) | 0.0749 (11) | |
N9' | 0.78989 (10) | −0.1379 (4) | −0.0408 (5) | 0.0974 (14) | |
N10' | 0.74280 (11) | 0.0563 (3) | 0.3805 (5) | 0.0864 (13) | |
N11' | 0.68067 (11) | 0.0254 (3) | −0.1637 (5) | 0.0767 (11) | |
O9 | 0.51784 (7) | 0.4467 (2) | 0.2691 (3) | 0.0616 (8) | |
H9 | 0.4958 | 0.4589 | 0.3303 | 0.092* | |
O9' | 0.55236 (7) | 0.4807 (2) | 0.5443 (4) | 0.0569 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.042 (2) | 0.056 (3) | 0.065 (3) | 0.0049 (18) | 0.023 (2) | 0.014 (2) |
C1' | 0.0289 (17) | 0.047 (2) | 0.034 (2) | −0.0031 (15) | 0.0035 (16) | −0.0048 (18) |
C2' | 0.043 (2) | 0.044 (2) | 0.032 (2) | −0.0001 (17) | 0.0037 (15) | −0.0009 (19) |
C2 | 0.0362 (19) | 0.046 (3) | 0.106 (3) | −0.0033 (18) | 0.020 (2) | −0.002 (3) |
C3' | 0.057 (2) | 0.060 (3) | 0.035 (2) | 0.008 (2) | 0.0042 (18) | 0.008 (2) |
C3 | 0.041 (2) | 0.056 (3) | 0.079 (3) | −0.0013 (19) | −0.0142 (19) | −0.016 (3) |
C4 | 0.0387 (19) | 0.058 (3) | 0.051 (2) | 0.0003 (18) | −0.0047 (16) | −0.001 (2) |
C4' | 0.047 (2) | 0.071 (3) | 0.041 (2) | 0.0157 (19) | −0.0008 (17) | 0.009 (2) |
C4A | 0.0301 (17) | 0.046 (2) | 0.033 (2) | 0.0065 (15) | 0.0034 (15) | 0.0118 (18) |
C5 | 0.0336 (18) | 0.045 (2) | 0.027 (2) | 0.0009 (15) | 0.0025 (15) | 0.0057 (19) |
C5' | 0.0338 (19) | 0.065 (3) | 0.046 (2) | 0.0010 (19) | 0.0073 (17) | 0.000 (2) |
C6 | 0.042 (2) | 0.071 (3) | 0.035 (2) | 0.011 (2) | 0.0020 (18) | −0.005 (2) |
C6' | 0.0365 (18) | 0.049 (2) | 0.040 (2) | −0.0049 (17) | 0.0040 (16) | 0.002 (2) |
C7' | 0.053 (2) | 0.071 (3) | 0.046 (2) | 0.0026 (18) | 0.0139 (17) | 0.016 (2) |
C7 | 0.074 (3) | 0.105 (4) | 0.029 (2) | 0.036 (2) | 0.0067 (18) | 0.007 (3) |
C8' | 0.053 (3) | 0.057 (3) | 0.043 (3) | 0.005 (2) | 0.013 (2) | 0.009 (2) |
C8 | 0.064 (2) | 0.086 (3) | 0.028 (2) | 0.033 (2) | 0.0061 (18) | 0.014 (2) |
C8A | 0.0355 (18) | 0.065 (3) | 0.043 (2) | 0.0142 (17) | 0.0170 (16) | 0.009 (2) |
C9 | 0.039 (2) | 0.043 (2) | 0.059 (3) | 0.0040 (16) | 0.006 (2) | 0.020 (2) |
C9' | 0.049 (2) | 0.082 (3) | 0.050 (3) | 0.006 (2) | 0.0087 (19) | −0.001 (2) |
C10' | 0.039 (2) | 0.060 (3) | 0.067 (3) | −0.0105 (19) | 0.013 (2) | −0.007 (2) |
C10 | 0.100 (3) | 0.060 (3) | 0.104 (4) | 0.018 (2) | 0.059 (3) | 0.047 (3) |
C11 | 0.042 (2) | 0.060 (3) | 0.030 (2) | −0.0030 (17) | 0.0069 (16) | −0.001 (2) |
C11' | 0.052 (2) | 0.046 (3) | 0.049 (3) | 0.0067 (18) | 0.017 (2) | 0.010 (2) |
C12 | 0.0415 (18) | 0.048 (2) | 0.031 (2) | −0.0010 (16) | 0.0030 (15) | 0.0012 (18) |
C13 | 0.046 (2) | 0.099 (4) | 0.062 (3) | 0.011 (3) | −0.015 (2) | −0.004 (3) |
N8' | 0.089 (3) | 0.084 (3) | 0.053 (2) | −0.013 (2) | 0.016 (2) | −0.005 (2) |
N9' | 0.057 (2) | 0.143 (4) | 0.095 (3) | 0.001 (2) | 0.032 (2) | 0.004 (3) |
N10' | 0.063 (2) | 0.101 (3) | 0.095 (3) | −0.031 (2) | 0.008 (2) | −0.042 (3) |
N11' | 0.094 (3) | 0.088 (3) | 0.051 (2) | 0.023 (2) | 0.028 (2) | 0.019 (2) |
O9 | 0.0462 (14) | 0.092 (2) | 0.0471 (15) | 0.0210 (14) | 0.0064 (12) | 0.0007 (16) |
O9' | 0.0444 (13) | 0.075 (2) | 0.0519 (16) | −0.0021 (12) | 0.0105 (13) | −0.0057 (16) |
C1—C2 | 1.513 (5) | C5'—C6' | 1.584 (5) |
C1—C9 | 1.517 (5) | C6—C13 | 1.316 (5) |
C1—C8A | 1.546 (5) | C6—C7 | 1.497 (5) |
C1—C10 | 1.549 (5) | C6'—C11' | 1.470 (5) |
C1'—C2' | 1.513 (4) | C6'—C10' | 1.480 (5) |
C1'—C12 | 1.529 (4) | C7'—H7'A | 0.9800 |
C1'—C6' | 1.547 (4) | C7'—H7'B | 0.9800 |
C1'—H1' | 1.0000 | C7'—H7'C | 0.9800 |
C2'—C3' | 1.306 (4) | C7—C8 | 1.521 (5) |
C2'—C7' | 1.506 (4) | C7—H7A | 0.9900 |
C2—C3 | 1.506 (5) | C7—H7B | 0.9900 |
C2—H2A | 0.9900 | C8'—N8' | 1.136 (5) |
C2—H2B | 0.9900 | C8—C8A | 1.530 (5) |
C3'—C4' | 1.491 (4) | C8—H8A | 0.9900 |
C3'—H3' | 0.9500 | C8—H8B | 0.9900 |
C3—C4 | 1.516 (5) | C8A—H8 | 1.0000 |
C3—H3A | 0.9900 | C9—O9' | 1.216 (4) |
C3—H3B | 0.9900 | C9—O9 | 1.325 (4) |
C4—C4A | 1.541 (4) | C9'—N9' | 1.139 (4) |
C4—H4A | 0.9900 | C10'—N10' | 1.133 (4) |
C4—H4B | 0.9900 | C10—H10A | 0.9800 |
C4'—C5' | 1.528 (5) | C10—H10B | 0.9800 |
C4'—H4'A | 0.9900 | C10—H10C | 0.9800 |
C4'—H4'B | 0.9900 | C11—H11A | 0.9800 |
C4A—C11 | 1.526 (4) | C11—H11B | 0.9800 |
C4A—C8A | 1.547 (4) | C11—H11C | 0.9800 |
C4A—C5 | 1.574 (4) | C11'—N11' | 1.134 (4) |
C5—C6 | 1.504 (4) | C12—H12A | 0.9900 |
C5—C12 | 1.527 (4) | C12—H12B | 0.9900 |
C5—H5 | 1.0000 | C13—H13A | 0.9500 |
C5'—C9' | 1.462 (5) | C13—H13B | 0.9500 |
C5'—C8' | 1.466 (5) | O9—H9 | 0.8400 |
C2—C1—C9 | 108.6 (3) | C13—C6—C5 | 125.4 (4) |
C2—C1—C8A | 108.5 (3) | C7—C6—C5 | 113.1 (3) |
C9—C1—C8A | 115.2 (3) | C11'—C6'—C10' | 108.8 (3) |
C2—C1—C10 | 107.4 (3) | C11'—C6'—C1' | 112.1 (3) |
C9—C1—C10 | 106.5 (3) | C10'—C6'—C1' | 110.3 (3) |
C8A—C1—C10 | 110.4 (3) | C11'—C6'—C5' | 108.0 (3) |
C2'—C1'—C12 | 109.9 (2) | C10'—C6'—C5' | 106.9 (3) |
C2'—C1'—C6' | 111.7 (2) | C1'—C6'—C5' | 110.5 (3) |
C12—C1'—C6' | 112.7 (3) | C2'—C7'—H7'A | 109.5 |
C2'—C1'—H1' | 107.4 | C2'—C7'—H7'B | 109.5 |
C12—C1'—H1' | 107.4 | H7'A—C7'—H7'B | 109.5 |
C6'—C1'—H1' | 107.4 | C2'—C7'—H7'C | 109.5 |
C3'—C2'—C7' | 120.0 (3) | H7'A—C7'—H7'C | 109.5 |
C3'—C2'—C1' | 124.3 (3) | H7'B—C7'—H7'C | 109.5 |
C7'—C2'—C1' | 115.7 (3) | C6—C7—C8 | 110.0 (3) |
C3—C2—C1 | 113.8 (3) | C6—C7—H7A | 109.7 |
C3—C2—H2A | 108.8 | C8—C7—H7A | 109.7 |
C1—C2—H2A | 108.8 | C6—C7—H7B | 109.7 |
C3—C2—H2B | 108.8 | C8—C7—H7B | 109.7 |
C1—C2—H2B | 108.8 | H7A—C7—H7B | 108.2 |
H2A—C2—H2B | 107.7 | N8'—C8'—C5' | 179.3 (4) |
C2'—C3'—C4' | 125.3 (3) | C7—C8—C8A | 111.9 (3) |
C2'—C3'—H3' | 117.3 | C7—C8—H8A | 109.2 |
C4'—C3'—H3' | 117.3 | C8A—C8—H8A | 109.2 |
C2—C3—C4 | 112.0 (3) | C7—C8—H8B | 109.2 |
C2—C3—H3A | 109.2 | C8A—C8—H8B | 109.2 |
C4—C3—H3A | 109.2 | H8A—C8—H8B | 107.9 |
C2—C3—H3B | 109.2 | C8—C8A—C4A | 111.1 (3) |
C4—C3—H3B | 109.2 | C8—C8A—C1 | 115.4 (3) |
H3A—C3—H3B | 107.9 | C4A—C8A—C1 | 116.3 (3) |
C3—C4—C4A | 113.5 (3) | C8—C8A—H8 | 104.1 |
C3—C4—H4A | 108.9 | C4A—C8A—H8 | 104.1 |
C4A—C4—H4A | 108.9 | C1—C8A—H8 | 104.1 |
C3—C4—H4B | 108.9 | O9'—C9—O9 | 122.3 (3) |
C4A—C4—H4B | 108.9 | O9'—C9—C1 | 124.4 (3) |
H4A—C4—H4B | 107.7 | O9—C9—C1 | 113.4 (3) |
C3'—C4'—C5' | 110.2 (3) | N9'—C9'—C5' | 178.7 (4) |
C3'—C4'—H4'A | 109.6 | N10'—C10'—C6' | 178.9 (5) |
C5'—C4'—H4'A | 109.6 | C1—C10—H10A | 109.5 |
C3'—C4'—H4'B | 109.6 | C1—C10—H10B | 109.5 |
C5'—C4'—H4'B | 109.6 | H10A—C10—H10B | 109.5 |
H4'A—C4'—H4'B | 108.1 | C1—C10—H10C | 109.5 |
C11—C4A—C4 | 110.1 (3) | H10A—C10—H10C | 109.5 |
C11—C4A—C8A | 112.1 (2) | H10B—C10—H10C | 109.5 |
C4—C4A—C8A | 108.2 (3) | C4A—C11—H11A | 109.5 |
C11—C4A—C5 | 109.7 (3) | C4A—C11—H11B | 109.5 |
C4—C4A—C5 | 108.4 (2) | H11A—C11—H11B | 109.5 |
C8A—C4A—C5 | 108.3 (2) | C4A—C11—H11C | 109.5 |
C6—C5—C12 | 113.5 (3) | H11A—C11—H11C | 109.5 |
C6—C5—C4A | 109.8 (3) | H11B—C11—H11C | 109.5 |
C12—C5—C4A | 113.2 (2) | N11'—C11'—C6' | 176.2 (4) |
C6—C5—H5 | 106.6 | C5—C12—C1' | 119.4 (2) |
C12—C5—H5 | 106.6 | C5—C12—H12A | 107.5 |
C4A—C5—H5 | 106.6 | C1'—C12—H12A | 107.5 |
C9'—C5'—C8' | 107.2 (3) | C5—C12—H12B | 107.5 |
C9'—C5'—C4' | 110.8 (3) | C1'—C12—H12B | 107.5 |
C8'—C5'—C4' | 110.5 (3) | H12A—C12—H12B | 107.0 |
C9'—C5'—C6' | 109.9 (3) | C6—C13—H13A | 120.0 |
C8'—C5'—C6' | 108.6 (3) | C6—C13—H13B | 120.0 |
C4'—C5'—C6' | 109.7 (3) | H13A—C13—H13B | 120.0 |
C13—C6—C7 | 121.4 (4) | C9—O9—H9 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···O9′i | 0.84 | 1.79 | 2.631 (3) | 178 |
Symmetry code: (i) −x+1, y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C26H30N4O2 |
Mr | 430.54 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 180 |
a, b, c (Å) | 30.664 (4), 11.8233 (19), 7.1857 (10) |
β (°) | 93.260 (12) |
V (Å3) | 2600.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.52 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Oxford-Diffraction Xcalibur Sapphire-I diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5114, 2615, 1302 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.085, 0.82 |
No. of reflections | 2615 |
No. of parameters | 293 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.12 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···O9'i | 0.84 | 1.79 | 2.631 (3) | 177.7 |
Symmetry code: (i) −x+1, y, −z+1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bouhal, K., Meynadier, J. M., Peyron, J. L., Peyron, L., Marion, J. P., Bonetti, G. & Meynadier, J. (1988). Le Cade en Dermatologie, Parfums, Cosmétiques et Aromes, 83, 73–82. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matasunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911–1921. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Juniperus oxycedrus has been used in traditional folk medicine for the treatment of chronic eczema and other several skin diseases (Bouhal et al., 1988). Trans communic acid 1 is one of the compounds which were isolated from Juniperusoxycedrus and known by its moderate anti-tumor activity (Iwamoto et al., 2001). In the search for cancer chemo preventive agents with strong activity, we have studied the Diels-Alder reaction of trans communic acid 1 with tetracyanoethylene 2 in the presence of SiO2 as catalyst (Fig.1). One cycloadduct 3 was obtained in 75% yield.
Its structure was identified as 1,4a-Dimethyl-6-methylene-5-(5,5,6,6-tetracyano-2-methylcyclohex-2-εnylmethyl)-decahydronaphthalene-1-carboxylic acid using spectral methods including 1H and 13C NMR and confirmed by an X-ray crystallographic analysis. The 1H NMR spectrum of 3 exhibits three methyl singlets at 1.96, 1.29 and 0.69 p.p.m., a triplet (J=3 Hz, at 5.57ppm) due to proton H-3' and two singlets (at 4.50 and 5.08 p.p.m.) assigned to methylenic protons at 13 position. The 13C NMR spectra reveals twenty six signals including specially a carbonyl group at 183.36 p.p.m. and four cyano group signals at 109.19; 110.07; 110.94 and 111.54ppm.
The molecule is build up by two fused six cyclohexyl rings linked linked through a CH2 spacer to a tetracyano-2-methylcyclohexyl ring (Fig. 2). The fused cyclohexyl rings, C1 to C8a and C4A to C8A, adopt a chair conformation as indicated by the puckering parameters [Q= 0.533 (6)°, 0.576 (6)° and θ= 0. 0(6)°, 0.4 (6)°, Cremer & Pople, (1975)]. The non fused cyclohexyl ring adopt a half-chair conformation[Q= 0.510 (6)° and θ= 50.7 (5)°]. The occurrence of O—H···O hydrogen bonds form pairs of molecules through a R22(8) ring motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 3).