organic compounds
(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: hyye@seu.edu.cn
The title molecule, C20H20N2, is chiral; the follows from the known of the input reagents. In addition to C—H⋯π ring interactions are also present. The angle between the planes of the phenyl rings is 65.6 (1)°. The heterocyclic ring of the quinoxaline system has a twist-boat configuration, while the cyclohexane ring has a chair configuration.
Related literature
For examples of the synthesis of non-centrosymmetric solid materials by reactions of chiral organic ligands and inorganic salts, see: Qu et al. (2004). For the geometric parameters of C=N bonds, see: Figuet et al. (2001); Kennedy & Reglinski (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807067505/fb2074sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067505/fb2074Isup2.hkl
Benzil (2.10 g, 10.0 mmol) and (1R,2R)-(-)-diaminocyclohexane (1.20 g, 10.5 mmol) were dissolved in methanol (20 ml) containing sulfuric acid (0.08 g) as a catalytic agent. The solution was stirred at room temperature. After 4 h, a yellow precipitate appeared. It was filtered off and washed with chilled methanol (10 ml). The crude product was recrystallized by slow evaporation of the saturated ethanol solution. Yellow block-like crystals with dimensions of tenths of mm were isolated.
All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: Cmethine—Hmethine = 0.98; Cmethylene—Hmethylene = 0.97; Caryl—Haryl = 0.93 Å; UisoH = 1.2UeqC in all the cases. In the absence of significant
effects, 1531 Friedel pairs were merged. The was determined by synthesis. The chiral reactant (1R,2R)-(-)-diaminocyclohexane was used.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).C20H20N2 | F(000) = 616 |
Mr = 288.38 | Dx = 1.207 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3447 reflections |
a = 5.6253 (11) Å | θ = 3.4–27.5° |
b = 15.402 (3) Å | µ = 0.07 mm−1 |
c = 18.315 (4) Å | T = 293 K |
V = 1586.8 (5) Å3 | Block, yellow |
Z = 4 | 0.12 × 0.08 × 0.05 mm |
Rigaku SCXmini diffractometer | 2134 independent reflections |
Radiation source: fine-focus sealed tube | 1880 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.6°, θmin = 3.5° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −19→20 |
Tmin = 0.901, Tmax = 1.000 | l = −23→23 |
15676 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1683P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max < 0.001 |
2134 reflections | Δρmax = 0.13 e Å−3 |
200 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
80 constraints | Extinction coefficient: 0.010 (2) |
Primary atom site location: structure-invariant direct methods |
C20H20N2 | V = 1586.8 (5) Å3 |
Mr = 288.38 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.6253 (11) Å | µ = 0.07 mm−1 |
b = 15.402 (3) Å | T = 293 K |
c = 18.315 (4) Å | 0.12 × 0.08 × 0.05 mm |
Rigaku SCXmini diffractometer | 2134 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1880 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 1.000 | Rint = 0.053 |
15676 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.13 e Å−3 |
2134 reflections | Δρmin = −0.13 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7959 (6) | 0.65882 (17) | 0.09928 (14) | 0.0512 (7) | |
H1A | 0.6841 | 0.6288 | 0.1316 | 0.061* | |
C2 | 0.7195 (7) | 0.75311 (18) | 0.09215 (16) | 0.0645 (8) | |
H2A | 0.5568 | 0.7557 | 0.0748 | 0.077* | |
H2B | 0.8198 | 0.7822 | 0.0567 | 0.077* | |
C3 | 0.7381 (7) | 0.7995 (2) | 0.16551 (17) | 0.0699 (9) | |
H3A | 0.7004 | 0.8605 | 0.1589 | 0.084* | |
H3B | 0.6221 | 0.7752 | 0.1989 | 0.084* | |
C4 | 0.9823 (7) | 0.79159 (18) | 0.19858 (17) | 0.0659 (9) | |
H4A | 0.9824 | 0.8180 | 0.2467 | 0.079* | |
H4B | 1.0958 | 0.8227 | 0.1685 | 0.079* | |
C5 | 1.0578 (7) | 0.69734 (16) | 0.20496 (15) | 0.0592 (8) | |
H5A | 1.2196 | 0.6944 | 0.2231 | 0.071* | |
H5B | 0.9556 | 0.6678 | 0.2396 | 0.071* | |
C6 | 1.0429 (5) | 0.65242 (16) | 0.13156 (14) | 0.0511 (7) | |
H6A | 1.1540 | 0.6811 | 0.0982 | 0.061* | |
C7 | 1.0503 (5) | 0.51148 (15) | 0.08549 (13) | 0.0476 (6) | |
C8 | 1.1020 (5) | 0.41698 (17) | 0.09128 (14) | 0.0503 (7) | |
C9 | 1.3120 (6) | 0.39001 (19) | 0.12512 (15) | 0.0583 (7) | |
H9A | 1.4192 | 0.4307 | 0.1430 | 0.070* | |
C10 | 1.3595 (7) | 0.3016 (2) | 0.13178 (17) | 0.0673 (9) | |
H10A | 1.4989 | 0.2834 | 0.1544 | 0.081* | |
C11 | 1.2019 (7) | 0.24103 (19) | 0.10512 (18) | 0.0684 (9) | |
H11A | 1.2349 | 0.1821 | 0.1094 | 0.082* | |
C12 | 0.9971 (7) | 0.26799 (18) | 0.07241 (16) | 0.0656 (9) | |
H12A | 0.8894 | 0.2270 | 0.0552 | 0.079* | |
C13 | 0.9474 (6) | 0.35524 (17) | 0.06444 (15) | 0.0565 (7) | |
H13A | 0.8089 | 0.3725 | 0.0408 | 0.068* | |
C14 | 0.9184 (5) | 0.54805 (16) | 0.02031 (14) | 0.0464 (6) | |
C15 | 0.9435 (5) | 0.50996 (15) | −0.05353 (13) | 0.0450 (6) | |
C16 | 1.1486 (5) | 0.46658 (17) | −0.07485 (15) | 0.0541 (7) | |
H16A | 1.2679 | 0.4558 | −0.0409 | 0.065* | |
C17 | 1.1760 (6) | 0.43947 (19) | −0.14618 (15) | 0.0601 (7) | |
H17A | 1.3142 | 0.4108 | −0.1601 | 0.072* | |
C18 | 1.0006 (6) | 0.45455 (18) | −0.19673 (15) | 0.0600 (8) | |
H18A | 1.0213 | 0.4365 | −0.2448 | 0.072* | |
C19 | 0.7950 (6) | 0.49611 (19) | −0.17673 (15) | 0.0578 (7) | |
H19A | 0.6759 | 0.5059 | −0.2110 | 0.069* | |
C20 | 0.7659 (6) | 0.52341 (16) | −0.10515 (14) | 0.0511 (6) | |
H20A | 0.6258 | 0.5511 | −0.0915 | 0.061* | |
N1 | 1.1133 (5) | 0.56069 (14) | 0.13814 (12) | 0.0557 (6) | |
N2 | 0.7915 (5) | 0.61639 (14) | 0.02727 (12) | 0.0526 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0596 (17) | 0.0478 (14) | 0.0463 (13) | 0.0055 (13) | 0.0037 (13) | −0.0004 (11) |
C2 | 0.084 (2) | 0.0535 (16) | 0.0564 (16) | 0.0211 (17) | −0.0011 (17) | −0.0020 (12) |
C3 | 0.094 (3) | 0.0526 (16) | 0.0631 (18) | 0.0175 (18) | 0.0079 (19) | −0.0023 (13) |
C4 | 0.091 (3) | 0.0436 (14) | 0.0631 (17) | −0.0021 (17) | 0.0042 (18) | −0.0010 (13) |
C5 | 0.077 (2) | 0.0467 (14) | 0.0543 (15) | −0.0056 (16) | −0.0053 (15) | 0.0005 (12) |
C6 | 0.0606 (17) | 0.0410 (13) | 0.0517 (14) | 0.0015 (13) | 0.0003 (14) | 0.0025 (11) |
C7 | 0.0542 (15) | 0.0415 (12) | 0.0471 (13) | 0.0037 (12) | −0.0003 (12) | 0.0030 (10) |
C8 | 0.0596 (17) | 0.0469 (13) | 0.0445 (13) | 0.0065 (13) | 0.0057 (13) | 0.0069 (11) |
C9 | 0.0608 (18) | 0.0550 (15) | 0.0590 (16) | 0.0095 (15) | −0.0028 (14) | 0.0039 (13) |
C10 | 0.078 (2) | 0.0612 (18) | 0.0628 (18) | 0.0265 (18) | 0.0031 (18) | 0.0132 (14) |
C11 | 0.095 (3) | 0.0447 (14) | 0.0657 (18) | 0.0139 (18) | 0.0167 (19) | 0.0102 (14) |
C12 | 0.085 (2) | 0.0454 (14) | 0.0665 (18) | −0.0041 (16) | 0.0073 (18) | 0.0080 (13) |
C13 | 0.0631 (18) | 0.0472 (13) | 0.0592 (16) | 0.0006 (14) | −0.0009 (15) | 0.0066 (12) |
C14 | 0.0490 (14) | 0.0417 (12) | 0.0486 (13) | −0.0007 (12) | −0.0001 (11) | 0.0031 (10) |
C15 | 0.0494 (14) | 0.0380 (11) | 0.0477 (13) | −0.0027 (12) | 0.0028 (11) | 0.0051 (10) |
C16 | 0.0528 (16) | 0.0557 (15) | 0.0537 (14) | 0.0044 (13) | 0.0025 (13) | 0.0015 (12) |
C17 | 0.0623 (18) | 0.0584 (16) | 0.0596 (16) | 0.0021 (15) | 0.0103 (15) | −0.0048 (14) |
C18 | 0.079 (2) | 0.0521 (15) | 0.0490 (14) | −0.0030 (16) | 0.0042 (15) | −0.0046 (12) |
C19 | 0.0713 (19) | 0.0506 (14) | 0.0513 (14) | −0.0014 (15) | −0.0106 (15) | 0.0051 (12) |
C20 | 0.0562 (16) | 0.0431 (13) | 0.0539 (14) | 0.0002 (13) | −0.0018 (13) | 0.0043 (11) |
N1 | 0.0655 (15) | 0.0453 (11) | 0.0563 (13) | 0.0060 (12) | −0.0078 (12) | 0.0012 (10) |
N2 | 0.0574 (14) | 0.0507 (12) | 0.0499 (12) | 0.0069 (12) | −0.0034 (11) | 0.0012 (10) |
C1—N2 | 1.472 (3) | C9—C10 | 1.393 (4) |
C1—C6 | 1.513 (4) | C9—H9A | 0.9300 |
C1—C2 | 1.520 (4) | C10—C11 | 1.377 (5) |
C1—H1A | 0.9800 | C10—H10A | 0.9300 |
C2—C3 | 1.525 (4) | C11—C12 | 1.363 (5) |
C2—H2A | 0.9700 | C11—H11A | 0.9300 |
C2—H2B | 0.9700 | C12—C13 | 1.380 (4) |
C3—C4 | 1.506 (6) | C12—H12A | 0.9300 |
C3—H3A | 0.9700 | C13—H13A | 0.9300 |
C3—H3B | 0.9700 | C14—N2 | 1.278 (3) |
C4—C5 | 1.517 (4) | C14—C15 | 1.481 (3) |
C4—H4A | 0.9700 | C15—C16 | 1.389 (4) |
C4—H4B | 0.9700 | C15—C20 | 1.391 (4) |
C5—C6 | 1.514 (4) | C16—C17 | 1.380 (4) |
C5—H5A | 0.9700 | C16—H16A | 0.9300 |
C5—H5B | 0.9700 | C17—C18 | 1.373 (5) |
C6—N1 | 1.472 (3) | C17—H17A | 0.9300 |
C6—H6A | 0.9800 | C18—C19 | 1.372 (5) |
C7—N1 | 1.276 (3) | C18—H18A | 0.9300 |
C7—C8 | 1.488 (3) | C19—C20 | 1.387 (4) |
C7—C14 | 1.514 (3) | C19—H19A | 0.9300 |
C8—C13 | 1.379 (4) | C20—H20A | 0.9300 |
C8—C9 | 1.397 (4) | ||
N2—C1—C6 | 109.6 (2) | C13—C8—C7 | 121.7 (3) |
N2—C1—C2 | 110.0 (2) | C9—C8—C7 | 119.2 (3) |
C6—C1—C2 | 110.8 (3) | C10—C9—C8 | 119.5 (3) |
N2—C1—H1A | 108.8 | C10—C9—H9A | 120.3 |
C6—C1—H1A | 108.8 | C8—C9—H9A | 120.3 |
C2—C1—H1A | 108.8 | C11—C10—C9 | 120.5 (3) |
C1—C2—C3 | 110.7 (2) | C11—C10—H10A | 119.7 |
C1—C2—H2A | 109.5 | C9—C10—H10A | 119.7 |
C3—C2—H2A | 109.5 | C12—C11—C10 | 119.6 (3) |
C1—C2—H2B | 109.5 | C12—C11—H11A | 120.2 |
C3—C2—H2B | 109.5 | C10—C11—H11A | 120.2 |
H2A—C2—H2B | 108.1 | C11—C12—C13 | 120.9 (3) |
C4—C3—C2 | 112.2 (3) | C11—C12—H12A | 119.5 |
C4—C3—H3A | 109.2 | C13—C12—H12A | 119.5 |
C2—C3—H3A | 109.2 | C8—C13—C12 | 120.4 (3) |
C4—C3—H3B | 109.2 | C8—C13—H13A | 119.8 |
C2—C3—H3B | 109.2 | C12—C13—H13A | 119.8 |
H3A—C3—H3B | 107.9 | N2—C14—C15 | 118.1 (2) |
C3—C4—C5 | 111.3 (3) | N2—C14—C7 | 120.1 (2) |
C3—C4—H4A | 109.4 | C15—C14—C7 | 121.7 (2) |
C5—C4—H4A | 109.4 | C16—C15—C20 | 118.5 (2) |
C3—C4—H4B | 109.4 | C16—C15—C14 | 121.8 (2) |
C5—C4—H4B | 109.4 | C20—C15—C14 | 119.6 (2) |
H4A—C4—H4B | 108.0 | C17—C16—C15 | 120.3 (3) |
C6—C5—C4 | 110.7 (2) | C17—C16—H16A | 119.9 |
C6—C5—H5A | 109.5 | C15—C16—H16A | 119.9 |
C4—C5—H5A | 109.5 | C18—C17—C16 | 120.5 (3) |
C6—C5—H5B | 109.5 | C18—C17—H17A | 119.8 |
C4—C5—H5B | 109.5 | C16—C17—H17A | 119.8 |
H5A—C5—H5B | 108.1 | C19—C18—C17 | 120.3 (3) |
N1—C6—C1 | 110.0 (2) | C19—C18—H18A | 119.8 |
N1—C6—C5 | 110.5 (2) | C17—C18—H18A | 119.8 |
C1—C6—C5 | 111.6 (2) | C18—C19—C20 | 119.6 (3) |
N1—C6—H6A | 108.2 | C18—C19—H19A | 120.2 |
C1—C6—H6A | 108.2 | C20—C19—H19A | 120.2 |
C5—C6—H6A | 108.2 | C19—C20—C15 | 120.9 (3) |
N1—C7—C8 | 118.2 (2) | C19—C20—H20A | 119.6 |
N1—C7—C14 | 120.7 (2) | C15—C20—H20A | 119.6 |
C8—C7—C14 | 121.1 (2) | C7—N1—C6 | 115.7 (2) |
C13—C8—C9 | 119.1 (3) | C14—N2—C1 | 116.5 (2) |
Experimental details
Crystal data | |
Chemical formula | C20H20N2 |
Mr | 288.38 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.6253 (11), 15.402 (3), 18.315 (4) |
V (Å3) | 1586.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.12 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.901, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15676, 2134, 1880 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.132, 1.19 |
No. of reflections | 2134 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.13 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).
D–H···Cg | D—H | H···Cg | D···Cg | D—H···Cg |
C3—H3A···Cg1i | 0.97 | 2.82 | 3.761 (4) | 164 |
C4—H4A···Cg2ii | 0.97 | 2.94 | 3.840 (3) | 154 |
C11—H11A···Cg1iii | 0.93 | 2.87 | 3.769 (3) | 164 |
Symmetry codes:(i) -1/2+x,3/2-y,-z; (ii) 2-x,1/2+y,1/2-z; (iii) 1/2+x,1/2-y,-z. Cg1 and Cg2 are the centroids of the phenyl rings C15–C20 C8–C13, respectively. |
Acknowledgements
This work was supported by a Start-up Grant from Southeast University to HYY.
References
Figuet, M., Averbuch-Pouchot, M. T., Du Moulinet d'Hardemare, D. & Jarjayes, O. (2001). Eur. J. Inorg. Chem. pp. 2089–2096. CrossRef Google Scholar
Kennedy, A. R. & Reglinski, J. (2001). Acta Cryst. E57, o1027–o1028. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. H., Liu, Z.-G., Xue, Z.-L. & You, X.-Z. (2004). Chem. Eur. J. 10, 54–60. Google Scholar
Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Presence of chiral centres in organic ligands is important for synthesis of chiral coordination polymers (Qu et al., 2004). We report here the crystal structure of (4aR,8aR)-4a,5,6,7,8,8a-hexahydro-2,3-diphenylquinoxaline (Fig. 1).
The lengths of the C?N double bonds (1.276 (3) and 1.278 (3) Å) are similar as in the following compounds containing the C?N double bonds: tris[(5-bromosalicylidene)aminoethyl]amine (Figuet et al. (2001) and N,N'-bis(salicylidene)-1,4,butanediamine (Kennedy et al.(2001).