metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(4-meth­oxy­thio­phenolato-κS)bis­­(tri­methyl­phosphine-κP)nickel(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 5 November 2007; accepted 18 December 2007; online 4 January 2008)

The title compound, [Ni(C7H7OS)2(C3H9P)2], was obtained as a product of the reaction of [NiMe2(PMe3)3] with two molar equivalents of 4-methoxy­thio­phenol in diethyl ether. The compound is stable in the air for several hours, but rapidly decomposes at room temperature in solution. The Ni atom displays a square-planar coordination with two P-donor atoms lying in trans positions. The benzene rings of the thio­phenolate ligands are almost perpendicular to the square coordination plane, making dihedral angles of 80.43 (4) and 72.60 (4)°.

Related literature

For the crystal structures of related diphenolato-nickel compounds, see: Klein et al. (1998[Klein, H.-F., Dal, A., Jung, T., Braun, S., Roehr, C., Floerke, U. & Haupt, H.-J. (1998). Eur. J. Inorg. Chem. pp. 621-627.]). For synthetic details, see: Klein & Karsch (1972[Klein, H.-F. & Karsch, H. H. (1972). Chem. Ber. 105, 2628-2636.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H7OS)2(C3H9P)2]

  • Mr = 489.23

  • Monoclinic, P 21 /c

  • a = 14.022 (3) Å

  • b = 15.983 (3) Å

  • c = 10.758 (2) Å

  • β = 100.93 (3)°

  • V = 2367.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 273 (2) K

  • 0.30 × 0.24 × 0.21 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.725, Tmax = 0.795

  • 14644 measured reflections

  • 5103 independent reflections

  • 4078 reflections with I > 2σ(I)

  • Rint = 0.040

  • 14954 standard reflections every 6 reflections intensity decay: 30%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.00

  • 5103 reflections

  • 372 parameters

  • All H-atom parameters refined

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—P1 2.2121 (7)
Ni1—P2 2.2224 (7)
Ni1—S2 2.2261 (9)
Ni1—S1 2.2288 (9)
P1—Ni1—P2 178.07 (2)
P1—Ni1—S2 87.01 (3)
P2—Ni1—S2 93.17 (3)
P1—Ni1—S1 92.17 (3)
P2—Ni1—S1 87.67 (3)
S2—Ni1—S1 178.85 (2)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title molecule (Fig.1) the nickel atom is coordinated in a square-planar geometry by two P atoms of trimethylphosphine groups and two S atoms of thiophenol groups. The phenyl rings of the thiophenlato ligands are almost perpendicular to the square coordination plane (angles 80.43 (4)° and 72.60 (4)°). Similar crystal structures have been reported in the literature, e.g. Bis(2-tert-butyl-4-methylphenolato)bis(trimethylphosphane)nickel and Bis(2-tert-butyl-6-methylphenolato)bis(trimethylphosphane)nickel (Klein et al.(1998)). The bond lengths and angles of these compounds are similar to those in the title compound.

Related literature top

For the crystal structures of related diphenolato–nickel compounds, see: Klein et al. 1998). For synthetic details, see: Klein & Karsch (1972).

Experimental top

Dimethyltris(trimethylphosphine)nickel was prepared according to the literature (Klein & Karsch (1972)). Other chemicals were used by purchased. To the solution of NiMe2(PMe3)3 (1.0 g, 3.15 mmol) in 50 ml of diethyl ether was added 4-methoxythiophenol (0.884 g, 6.30 mmol) at -80 °C, a dark red suspension formed rapidly. After stirring at room temperature for 16 h the reaction solution was filtrated, then the red solid residue was extracted with THF (50 ml). Crystallization from ether and THF at 4 °C afforded dark red crystals suitable for X-ray diffraction analysis. (yield: 0.89 g, 57.8%, m. p.: 135 °C).

Refinement top

All H atoms were positioned geometrically and were refined freely (C—H = 0.86–1.02 Å).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with a 30% probability displacement ellipsoids for non-H atoms.
[trans-Bis(4-methoxythiophenolato-κS)bis(trimethylphosphine-κP)nickel(II) top
Crystal data top
[Ni(C7H7OS)2(C3H9P)2]F(000) = 1032
Mr = 489.23Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1843 reflections
a = 14.022 (3) Åθ = 2.4–24.3°
b = 15.983 (3) ŵ = 1.14 mm1
c = 10.758 (2) ÅT = 273 K
β = 100.93 (3)°Cubic, dark red
V = 2367.3 (8) Å30.30 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker P4
diffractometer
4078 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.1°, θmin = 1.5°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 2020
Tmin = 0.725, Tmax = 0.795l = 1313
14644 measured reflections14954 standard reflections every 6 reflections
5103 independent reflections intensity decay: 30%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
5103 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C7H7OS)2(C3H9P)2]V = 2367.3 (8) Å3
Mr = 489.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.022 (3) ŵ = 1.14 mm1
b = 15.983 (3) ÅT = 273 K
c = 10.758 (2) Å0.30 × 0.24 × 0.21 mm
β = 100.93 (3)°
Data collection top
Bruker P4
diffractometer
4078 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
Rint = 0.040
Tmin = 0.725, Tmax = 0.79514954 standard reflections every 6 reflections
14644 measured reflections intensity decay: 30%
5103 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085All H-atom parameters refined
S = 1.00Δρmax = 0.34 e Å3
5103 reflectionsΔρmin = 0.47 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.257048 (17)0.016260 (16)0.74629 (2)0.03027 (9)
P10.37880 (4)0.08109 (3)0.68296 (5)0.03426 (13)
P20.13706 (4)0.05297 (3)0.80892 (5)0.03389 (13)
S10.17664 (4)0.00061 (3)0.54812 (5)0.03656 (13)
S20.33803 (4)0.03453 (3)0.94334 (5)0.03455 (12)
C10.24429 (14)0.07893 (12)0.48988 (19)0.0322 (4)
C20.30721 (15)0.13200 (13)0.56961 (19)0.0345 (4)
C30.35857 (15)0.19580 (13)0.52267 (19)0.0336 (4)
C40.34651 (14)0.20757 (12)0.39280 (19)0.0319 (4)
C50.28431 (15)0.15531 (13)0.31149 (19)0.0334 (4)
C60.23405 (15)0.09207 (13)0.35826 (19)0.0318 (4)
C70.4551 (2)0.32462 (15)0.4172 (3)0.0473 (6)
C80.25968 (14)0.10267 (12)1.00678 (18)0.0317 (4)
C90.19724 (15)0.15744 (13)0.9314 (2)0.0349 (4)
C100.13341 (16)0.20890 (13)0.9820 (2)0.0352 (4)
C110.13282 (14)0.20600 (12)1.11072 (19)0.0330 (4)
C120.19604 (15)0.15232 (13)1.18851 (19)0.0344 (4)
C130.25869 (15)0.10109 (13)1.13772 (19)0.0330 (4)
C140.00536 (19)0.30705 (15)1.0914 (3)0.0465 (6)
C150.49677 (17)0.03403 (16)0.7405 (3)0.0439 (5)
C160.3913 (2)0.18866 (15)0.7388 (3)0.0465 (5)
C170.3817 (2)0.0948 (2)0.5153 (2)0.0527 (6)
C180.01701 (18)0.00824 (17)0.7602 (3)0.0492 (6)
C190.1249 (2)0.15763 (16)0.7437 (3)0.0489 (6)
C200.1384 (3)0.0739 (2)0.9760 (3)0.0594 (7)
O10.39280 (12)0.26858 (9)0.33592 (14)0.0417 (4)
O20.07266 (11)0.25359 (10)1.16992 (14)0.0409 (3)
H80.3030 (17)0.0637 (14)1.193 (2)0.037 (6)*
H40.1928 (17)0.0562 (14)0.305 (2)0.036 (6)*
H20.4020 (17)0.2288 (14)0.581 (2)0.037 (6)*
H60.0932 (18)0.2463 (15)0.926 (2)0.042 (6)*
H10.3157 (18)0.1256 (15)0.658 (2)0.045 (7)*
H70.1979 (17)0.1481 (13)1.278 (2)0.038 (6)*
H30.2763 (18)0.1623 (15)0.226 (2)0.043 (6)*
H300.083 (2)0.1094 (17)0.983 (3)0.060 (8)*
H210.444 (2)0.1243 (17)0.506 (3)0.064 (8)*
H50.2010 (18)0.1621 (15)0.843 (2)0.047 (7)*
H220.3789 (19)0.0424 (18)0.477 (3)0.047 (7)*
H240.028 (2)0.0478 (17)0.788 (3)0.061 (8)*
H150.506 (2)0.0290 (18)0.822 (3)0.064 (9)*
H270.065 (2)0.1831 (17)0.755 (3)0.061 (8)*
H160.544 (2)0.0681 (17)0.715 (3)0.059 (8)*
H120.031 (2)0.3322 (17)1.149 (3)0.059 (8)*
H90.5112 (18)0.2937 (15)0.477 (2)0.045 (6)*
H250.004 (2)0.0024 (19)0.673 (3)0.072 (10)*
H180.387 (2)0.1897 (17)0.826 (3)0.059 (8)*
H130.0356 (19)0.2742 (16)1.023 (3)0.046 (7)*
H280.123 (2)0.1555 (17)0.655 (3)0.061 (8)*
H190.341 (2)0.2181 (19)0.694 (3)0.070 (9)*
H140.038 (2)0.3483 (18)1.049 (3)0.060 (8)*
H310.130 (2)0.021 (2)1.020 (3)0.078 (10)*
H290.183 (2)0.1915 (19)0.785 (3)0.076 (9)*
H320.190 (2)0.1022 (19)1.005 (3)0.066 (10)*
H200.455 (2)0.2127 (17)0.728 (3)0.062 (8)*
H170.500 (2)0.0226 (18)0.701 (3)0.059 (8)*
H100.4198 (19)0.3535 (16)0.469 (3)0.051 (7)*
H110.480 (2)0.3626 (17)0.361 (3)0.062 (8)*
H260.010 (2)0.047 (2)0.799 (3)0.066 (9)*
H230.327 (2)0.125 (2)0.477 (3)0.073 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02676 (14)0.03814 (15)0.02594 (14)0.00280 (10)0.00507 (11)0.00110 (9)
P10.0296 (3)0.0426 (3)0.0310 (3)0.0011 (2)0.0065 (2)0.0020 (2)
P20.0300 (3)0.0403 (3)0.0314 (3)0.0006 (2)0.0058 (2)0.0005 (2)
S10.0313 (3)0.0491 (3)0.0280 (3)0.0076 (2)0.0023 (2)0.0026 (2)
S20.0304 (3)0.0442 (3)0.0280 (2)0.0055 (2)0.0028 (2)0.0019 (2)
C10.0274 (9)0.0401 (10)0.0288 (10)0.0031 (8)0.0045 (8)0.0007 (8)
C20.0355 (11)0.0437 (11)0.0241 (9)0.0010 (8)0.0048 (9)0.0020 (8)
C30.0340 (10)0.0375 (10)0.0287 (10)0.0003 (8)0.0046 (9)0.0015 (8)
C40.0340 (10)0.0319 (9)0.0305 (10)0.0039 (8)0.0079 (9)0.0022 (7)
C50.0357 (11)0.0401 (10)0.0243 (10)0.0054 (8)0.0055 (9)0.0017 (8)
C60.0303 (10)0.0370 (10)0.0273 (10)0.0026 (8)0.0033 (8)0.0034 (8)
C70.0602 (16)0.0377 (11)0.0441 (13)0.0093 (11)0.0102 (13)0.0008 (10)
C80.0311 (10)0.0364 (10)0.0278 (10)0.0005 (8)0.0057 (8)0.0015 (8)
C90.0369 (11)0.0408 (11)0.0277 (10)0.0021 (8)0.0076 (9)0.0013 (8)
C100.0374 (11)0.0354 (10)0.0326 (11)0.0038 (8)0.0060 (9)0.0022 (8)
C110.0315 (10)0.0344 (9)0.0342 (11)0.0038 (8)0.0090 (9)0.0078 (8)
C120.0364 (11)0.0413 (11)0.0257 (10)0.0048 (8)0.0066 (9)0.0030 (8)
C130.0329 (10)0.0361 (10)0.0286 (10)0.0010 (8)0.0021 (9)0.0011 (8)
C140.0482 (14)0.0390 (12)0.0538 (15)0.0080 (10)0.0136 (12)0.0038 (11)
C150.0336 (11)0.0498 (13)0.0508 (15)0.0038 (10)0.0144 (11)0.0081 (11)
C160.0448 (14)0.0432 (12)0.0521 (15)0.0023 (10)0.0106 (12)0.0040 (11)
C170.0517 (16)0.0705 (18)0.0376 (13)0.0125 (14)0.0124 (12)0.0036 (12)
C180.0362 (12)0.0544 (14)0.0597 (17)0.0063 (10)0.0161 (12)0.0100 (12)
C190.0460 (14)0.0430 (12)0.0597 (17)0.0040 (11)0.0148 (13)0.0049 (11)
C200.0605 (18)0.075 (2)0.0420 (14)0.0214 (16)0.0091 (14)0.0093 (13)
O10.0503 (9)0.0424 (8)0.0319 (8)0.0087 (7)0.0061 (7)0.0055 (6)
O20.0388 (8)0.0495 (8)0.0353 (8)0.0066 (7)0.0091 (7)0.0084 (6)
Geometric parameters (Å, º) top
Ni1—P12.2121 (7)C9—H50.96 (2)
Ni1—P22.2224 (7)C10—C111.387 (3)
Ni1—S22.2261 (9)C10—H60.96 (3)
Ni1—S12.2288 (9)C11—O21.378 (2)
P1—C151.816 (2)C11—C121.393 (3)
P1—C161.819 (3)C12—C131.387 (3)
P1—C171.825 (3)C12—H70.96 (2)
P2—C191.809 (3)C13—H80.98 (2)
P2—C181.812 (3)C14—O21.425 (3)
P2—C201.825 (3)C14—H120.97 (3)
S1—C11.770 (2)C14—H130.99 (3)
S2—C81.7729 (19)C14—H140.97 (3)
C1—C21.395 (3)C15—H150.86 (3)
C1—C61.412 (3)C15—H160.94 (3)
C2—C31.397 (3)C15—H171.01 (3)
C2—H10.94 (3)C16—H180.95 (3)
C3—C41.388 (3)C16—H190.91 (3)
C3—H20.95 (2)C16—H201.00 (3)
C4—O11.377 (2)C17—H211.02 (3)
C4—C51.391 (3)C17—H220.93 (3)
C5—C61.381 (3)C17—H230.93 (3)
C5—H30.91 (3)C18—H240.98 (3)
C6—H40.93 (2)C18—H250.92 (4)
C7—O11.428 (3)C18—H260.99 (3)
C7—H91.04 (3)C19—H270.96 (3)
C7—H100.94 (3)C19—H280.95 (3)
C7—H110.97 (3)C19—H291.01 (3)
C8—C91.386 (3)C20—H300.97 (3)
C8—C131.412 (3)C20—H310.99 (4)
C9—C101.400 (3)C20—H320.86 (3)
P1—Ni1—P2178.07 (2)O2—C11—C10124.26 (19)
P1—Ni1—S287.01 (3)O2—C11—C12115.96 (18)
P2—Ni1—S293.17 (3)C10—C11—C12119.78 (18)
P1—Ni1—S192.17 (3)C13—C12—C11120.36 (18)
P2—Ni1—S187.67 (3)C13—C12—H7117.0 (14)
S2—Ni1—S1178.85 (2)C11—C12—H7122.6 (14)
C15—P1—C16104.76 (13)C12—C13—C8120.63 (19)
C15—P1—C17101.37 (14)C12—C13—H8120.1 (13)
C16—P1—C17101.21 (14)C8—C13—H8119.2 (13)
C15—P1—Ni1114.04 (8)O2—C14—H12104.1 (17)
C16—P1—Ni1111.87 (8)O2—C14—H13110.3 (14)
C17—P1—Ni1121.57 (10)H12—C14—H13113 (2)
C19—P2—C18103.82 (14)O2—C14—H14111.5 (18)
C19—P2—C20101.25 (15)H12—C14—H14112 (2)
C18—P2—C20101.07 (16)H13—C14—H14106 (2)
C19—P2—Ni1111.32 (9)P1—C15—H15110 (2)
C18—P2—Ni1115.54 (9)P1—C15—H16108.0 (17)
C20—P2—Ni1121.54 (10)H15—C15—H16112 (3)
C1—S1—Ni1102.20 (7)P1—C15—H17109.9 (17)
C8—S2—Ni1101.87 (7)H15—C15—H17110 (3)
C2—C1—C6117.29 (18)H16—C15—H17107 (2)
C2—C1—S1122.53 (15)P1—C16—H18108.8 (17)
C6—C1—S1120.16 (16)P1—C16—H19107 (2)
C1—C2—C3122.05 (19)H18—C16—H19109 (3)
C1—C2—H1119.9 (15)P1—C16—H20111.0 (16)
C3—C2—H1118.0 (15)H18—C16—H20109 (2)
C4—C3—C2119.3 (2)H19—C16—H20111 (2)
C4—C3—H2121.8 (14)P1—C17—H21109.3 (17)
C2—C3—H2118.8 (14)P1—C17—H22108.9 (17)
O1—C4—C3124.43 (19)H21—C17—H22110 (2)
O1—C4—C5115.97 (17)P1—C17—H23109.3 (19)
C3—C4—C5119.60 (18)H21—C17—H23112 (3)
C6—C5—C4120.87 (18)H22—C17—H23108 (3)
C6—C5—H3118.9 (15)P2—C18—H24106.1 (17)
C4—C5—H3120.2 (15)P2—C18—H25109 (2)
C5—C6—C1120.84 (19)H24—C18—H25111 (3)
C5—C6—H4121.8 (14)P2—C18—H26113.3 (18)
C1—C6—H4117.3 (14)H24—C18—H26108 (2)
O1—C7—H9112.5 (14)H25—C18—H26109 (3)
O1—C7—H10110.2 (16)P2—C19—H27111.2 (16)
H9—C7—H10107 (2)P2—C19—H28109.9 (17)
O1—C7—H11105.1 (17)H27—C19—H28106 (3)
H9—C7—H11111 (2)P2—C19—H29108.5 (18)
H10—C7—H11111 (2)H27—C19—H29112 (2)
C9—C8—C13118.05 (18)H28—C19—H29109 (2)
C9—C8—S2122.12 (15)P2—C20—H30108.9 (17)
C13—C8—S2119.82 (16)P2—C20—H31110 (2)
C8—C9—C10121.55 (19)H30—C20—H31107 (2)
C8—C9—H5118.6 (15)P2—C20—H32107 (2)
C10—C9—H5119.8 (15)H30—C20—H32107 (3)
C11—C10—C9119.6 (2)H31—C20—H32117 (3)
C11—C10—H6122.6 (14)C4—O1—C7117.19 (17)
C9—C10—H6117.8 (14)C11—O2—C14116.84 (17)

Experimental details

Crystal data
Chemical formula[Ni(C7H7OS)2(C3H9P)2]
Mr489.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.022 (3), 15.983 (3), 10.758 (2)
β (°) 100.93 (3)
V3)2367.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.30 × 0.24 × 0.21
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.725, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
14644, 5103, 4078
Rint0.040
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.00
No. of reflections5103
No. of parameters372
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.34, 0.47

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Ni1—P12.2121 (7)Ni1—S22.2261 (9)
Ni1—P22.2224 (7)Ni1—S12.2288 (9)
P1—Ni1—P2178.07 (2)P1—Ni1—S192.17 (3)
P1—Ni1—S287.01 (3)P2—Ni1—S187.67 (3)
P2—Ni1—S293.17 (3)S2—Ni1—S1178.85 (2)
 

Acknowledgements

This work was supported by the NSFC (grant Nos. 20572062 and 20372042).

References

First citationKlein, H.-F., Dal, A., Jung, T., Braun, S., Roehr, C., Floerke, U. & Haupt, H.-J. (1998). Eur. J. Inorg. Chem. pp. 621–627.  CrossRef Google Scholar
First citationKlein, H.-F. & Karsch, H. H. (1972). Chem. Ber. 105, 2628–2636.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds