inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­copper(II) [di-μ3-sulfato-disodiate(I)]]

aDepartment of Chemistry, Zhou Kou Normal University, 466001, People's Republic of China, and bDepartment of Chemistry, Jiangsu University, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: chinawuwen@126.com

(Received 11 November 2007; accepted 18 December 2007; online 4 January 2008)

The title compound, {[Cu(H2O)6][Na2(SO4)2]}n, has been prepared under mild hydro­thermal conditions and has been structurally characterized. It exhibits a structure in which the inorganic frameworks are three-dimensional, participating in extensive hydrogen bonding. Copper occupies a special position ([\overline{1}]). The Na atom is coordinated by five O atoms of four sulfates [Na—O distances are between 2.825 (3) and 2.983 (3) Å]. The four O atoms of the sulfate ligand are coordinated to four Na atoms, the sulfate ligands coordinating in a chelating/bridging tetra­dentate mode.

Related literature

For the structure of [C6H18N2]0.5[Fe(SO4)2(H2O)2], see: Fu et al. (2006[Fu, Y., Xu, Z., Ren, J., Wu, H. & Yuan, R. (2006). Inorg. Chem. 45, 8452-8458.])

[Scheme 1]

Experimental

Crystal data
  • [Cu(H2O)6][Na2(SO4)2]

  • Mr = 409.74

  • Monoclinic, P 21 /c

  • a = 6.2345 (12) Å

  • b = 12.333 (3) Å

  • c = 9.1822 (18) Å

  • β = 105.56 (3)°

  • V = 680.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 291 (2) K

  • 0.20 × 0.17 × 0.17 mm

Data collection
  • Rigaku R-AXIS IV diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.607, Tmax = 0.709

  • 2371 measured reflections

  • 1322 independent reflections

  • 1257 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.09

  • 1322 reflections

  • 113 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2F⋯O4i 0.90 (3) 1.915 (15) 2.790 (3) 166 (4)
O3—H3F⋯O6ii 0.80 (5) 1.89 (5) 2.674 (4) 167 (5)
O1—H1F⋯O5iii 0.90 (3) 1.82 (3) 2.719 (4) 175 (5)
O1—H1E⋯O7iv 0.80 (5) 1.96 (5) 2.759 (4) 173 (4)
O2—H2E⋯O7 0.90 (4) 1.93 (4) 2.800 (4) 164 (5)
O3—H3E⋯O4 0.89 (3) 1.83 (3) 2.712 (3) 174 (4)
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS (Rigaku, 1996[Rigaku (1996). PROCESS. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS; data reduction: PROCESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: TEXSAN (Molecular Structure Corporation, 1997[Molecular Structure Corporation (1997). TEXSAN. Version 1.7. MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: TEXSAN.

Supporting information


Comment top

The structure of the title compound consists of an infinite three-dimensional [Na2(SO4)2]n2n- network, the [Cu(H2O)6]n2n+ cations reside between inorganic layers, balancing charge and donating hydrogen bonds to the layers. The asymmetric unit contains one Cu(II) cation, three water molecules, one sulfate dianion and one sodium cation. (Fig. 1). To the best of our knowledge, the title compound is the first layer structure of inorganically templated sodium sulfate. As shown in Fig. 2, sodium atoms are bridged by sulfate groups into an infinite layer structure parallel to the ab-plane. The Cu(II) cation is approximately octahedrally coordinated by the oxygen atoms of six H2O. In each sulfate group, four oxygen atoms are coordinated to sodium, for bridged oxygen atoms, the angles of S—O—Na range from 99.08 (10) to 122.97 (13)°.

Related literature top

For the structure of [C6H18N2]0.5[Fe(SO4)2(H2O)2], see: Fu et al. (2006)

Experimental top

All the reagents were of AR grade and used without further purification, a mixture of potassium hydrogen phthalate (0.2040 g, 1 mmol), and NaOH (0.0040 g, 1 mmol) were dissolved in 50 ml EtOH/H2O (V:V = 1:1) solution, and then the resultant solution was added in 10 ml double-distilled water containing Cu(NO3)2.3H2O (0.2426 g, 1 mmol) and Fe2(SO4)3 (0.39974 g, 1 mmol). The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals were obtained in a yield up to 56.32% based on Cu..

Refinement top

H1F, H2F, H2E and H3E atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H=0.90 Å, and with Uiso(H)=1.2Ueq, other H atoms were positioned geometrically and refeined freely. The maximum peak and deepest hole are located 0.51 Å and -0.42 Å, respectively, from Cu.

Computing details top

Data collection: PROCESS (Rigaku, 1996); cell refinement: PROCESS (Rigaku, 1996); data reduction: PROCESS (Rigaku, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP plot of 1 with 30% probability ellipsoid.
[Figure 2] Fig. 2. [Na2(SO4)2]n2n- network in title compound 1.
Poly[hexaaquacopper(II) [di-µ3-sulfato-disodiate(I)]] top
Crystal data top
[Cu(H2O)6][Na2(SO4)2]F(000) = 414
Mr = 409.74Dx = 2.001 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 289 reflections
a = 6.2345 (12) Åθ = 2–25.1°
b = 12.333 (3) ŵ = 2.04 mm1
c = 9.1822 (18) ÅT = 291 K
β = 105.56 (3)°Prismatic, blue
V = 680.1 (3) Å30.20 × 0.17 × 0.17 mm
Z = 2
Data collection top
Rigaku R-AXIS IV
diffractometer
1322 independent reflections
Radiation source: fine-focus sealed tube1257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.8°
Oscillation frames scansh = 07
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1515
Tmin = 0.607, Tmax = 0.709l = 1110
2371 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.2605P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1322 reflectionsΔρmax = 0.51 e Å3
113 parametersΔρmin = 0.42 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (4)
Crystal data top
[Cu(H2O)6][Na2(SO4)2]V = 680.1 (3) Å3
Mr = 409.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.2345 (12) ŵ = 2.04 mm1
b = 12.333 (3) ÅT = 291 K
c = 9.1822 (18) Å0.20 × 0.17 × 0.17 mm
β = 105.56 (3)°
Data collection top
Rigaku R-AXIS IV
diffractometer
1322 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1257 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.709Rint = 0.026
2371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0364 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.51 e Å3
1322 reflectionsΔρmin = 0.42 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50001.00000.0195 (2)
S10.76455 (13)0.63853 (6)0.59661 (9)0.0249 (2)
Na10.8483 (3)0.35098 (12)0.62649 (17)0.0382 (4)
O10.5346 (4)0.3875 (2)0.8249 (3)0.0340 (6)
O20.3313 (4)0.6137 (2)0.8339 (3)0.0360 (6)
H2F0.192 (3)0.594 (4)0.786 (4)0.045 (12)*
H2E0.409 (8)0.620 (4)0.765 (4)0.062 (15)*
O30.7863 (4)0.5650 (2)0.9976 (3)0.0253 (5)
H3F0.801 (8)0.627 (4)1.025 (6)0.054 (15)*
O40.8777 (4)0.56884 (18)0.7250 (2)0.0289 (5)
O50.7360 (5)0.5768 (3)0.4569 (3)0.0486 (8)
O60.9065 (4)0.7338 (2)0.5942 (3)0.0412 (7)
O70.5467 (4)0.6744 (2)0.6153 (3)0.0357 (6)
H3E0.825 (7)0.563 (3)0.911 (3)0.036 (11)*
H1F0.439 (7)0.401 (4)0.734 (3)0.068 (16)*
H1E0.503 (7)0.327 (4)0.846 (5)0.038 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0200 (3)0.0198 (3)0.0185 (3)0.00122 (18)0.0047 (2)0.00199 (18)
S10.0269 (4)0.0244 (4)0.0222 (4)0.0025 (3)0.0046 (3)0.0043 (3)
Na10.0385 (8)0.0395 (8)0.0391 (8)0.0010 (6)0.0149 (7)0.0020 (6)
O10.0213 (14)0.0204 (14)0.0257 (13)0.0061 (11)0.0075 (11)0.0023 (11)
O20.0210 (13)0.0221 (15)0.0255 (13)0.0063 (11)0.0076 (11)0.0023 (11)
O30.0262 (11)0.0255 (12)0.0260 (12)0.0027 (9)0.0099 (9)0.0009 (9)
O40.0315 (12)0.0313 (13)0.0239 (11)0.0042 (10)0.0075 (9)0.0080 (9)
O50.0633 (19)0.0553 (18)0.0234 (13)0.0095 (15)0.0051 (12)0.0072 (12)
O60.0347 (14)0.0320 (13)0.0557 (17)0.0018 (11)0.0100 (12)0.0155 (12)
O70.0258 (12)0.0333 (13)0.0477 (15)0.0045 (10)0.0094 (11)0.0033 (11)
Geometric parameters (Å, º) top
Cu1—O3i1.962 (2)Na1—O7ii2.856 (3)
Cu1—O31.962 (2)Na1—O6iii2.983 (3)
Cu1—O2i2.130 (3)O1—H1F0.90 (3)
Cu1—O22.130 (3)O1—H1E0.81 (5)
Cu1—O12.178 (3)O2—H2F0.90 (3)
Cu1—O1i2.178 (3)O2—H2E0.90 (4)
S1—O51.461 (3)O3—H3F0.80 (5)
S1—O61.475 (3)O3—H3E0.89 (3)
S1—O41.476 (2)O6—Na1iv2.983 (3)
S1—O71.482 (3)O7—Na1ii2.856 (3)
Na1—O42.825 (3)
O3i—Cu1—O3180.0O5—S1—O7110.99 (17)
O3i—Cu1—O2i89.95 (10)O6—S1—O7109.63 (15)
O3—Cu1—O2i90.05 (10)O4—S1—O7109.74 (14)
O3i—Cu1—O290.05 (10)O4—Na1—O7ii108.76 (8)
O3—Cu1—O289.95 (10)O4—Na1—O6iii102.19 (8)
O2i—Cu1—O2180.000 (1)O7ii—Na1—O6iii138.69 (9)
O3i—Cu1—O191.07 (10)Cu1—O1—H1F113 (4)
O3—Cu1—O188.93 (10)Cu1—O1—H1E109 (3)
O2i—Cu1—O188.93 (10)H1F—O1—H1E104 (5)
O2—Cu1—O191.07 (10)Cu1—O2—H2F113 (3)
O3i—Cu1—O1i88.93 (10)Cu1—O2—H2E108 (3)
O3—Cu1—O1i91.07 (10)H2F—O2—H2E109 (4)
O2i—Cu1—O1i91.07 (10)Cu1—O3—H3F114 (4)
O2—Cu1—O1i88.93 (10)Cu1—O3—H3E118 (3)
O1—Cu1—O1i180.000 (1)H3F—O3—H3E105 (4)
O5—S1—O6109.52 (18)S1—O4—Na1108.78 (12)
O5—S1—O4108.50 (16)S1—O6—Na1iv122.98 (15)
O6—S1—O4108.40 (15)S1—O7—Na1ii120.20 (14)
O5—S1—O4—Na116.47 (19)O4—S1—O6—Na1iv41.0 (2)
O6—S1—O4—Na1135.34 (14)O7—S1—O6—Na1iv78.82 (19)
O7—S1—O4—Na1104.95 (14)O5—S1—O7—Na1ii9.3 (2)
O7ii—Na1—O4—S128.50 (15)O6—S1—O7—Na1ii111.83 (17)
O6iii—Na1—O4—S1179.25 (12)O4—S1—O7—Na1ii129.22 (15)
O5—S1—O6—Na1iv159.17 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2F···O4v0.90 (3)1.92 (2)2.790 (3)166 (4)
O3—H3F···O6vi0.80 (5)1.89 (5)2.674 (4)167 (5)
O1—H1F···O5ii0.90 (3)1.82 (3)2.719 (4)175 (5)
O1—H1E···O7vii0.80 (5)1.96 (5)2.759 (4)173 (4)
O2—H2E···O70.90 (4)1.93 (4)2.800 (4)164 (5)
O3—H3E···O40.89 (3)1.83 (3)2.712 (3)174 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+3/2, z+1/2; (vii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(H2O)6][Na2(SO4)2]
Mr409.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.2345 (12), 12.333 (3), 9.1822 (18)
β (°) 105.56 (3)
V3)680.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.20 × 0.17 × 0.17
Data collection
DiffractometerRigaku R-AXIS IV
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.607, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
2371, 1322, 1257
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.09
No. of reflections1322
No. of parameters113
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.42

Computer programs: PROCESS (Rigaku, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN (Molecular Structure Corporation, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2F···O4i0.90 (3)1.915 (15)2.790 (3)166 (4)
O3—H3F···O6ii0.80 (5)1.89 (5)2.674 (4)167 (5)
O1—H1F···O5iii0.90 (3)1.82 (3)2.719 (4)175 (5)
O1—H1E···O7iv0.80 (5)1.96 (5)2.759 (4)173 (4)
O2—H2E···O70.90 (4)1.93 (4)2.800 (4)164 (5)
O3—H3E···O40.89 (3)1.83 (3)2.712 (3)174 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

References

First citationFu, Y., Xu, Z., Ren, J., Wu, H. & Yuan, R. (2006). Inorg. Chem. 45, 8452–8458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation (1997). TEXSAN. Version 1.7. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1996). PROCESS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds