organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­azido­toluene

aDepartment of Chemistry and Biochemistry, Ludwig-Maximilian University, Butenandtstrasse 5–13, D-81377 Munich, Germany
*Correspondence e-mail: tmk@cup.uni-muenchen.de

(Received 10 December 2007; accepted 17 December 2007; online 4 January 2008)

The structure of the title compound, C7H6N6, consists of almost planar mol­ecules with C—N distances of 1.429 (2) and 1.428 (2) Å. The H atoms of the methyl group are disordered over two sites with occupancy factors of 0.69 and 0.31. The azide groups show typical geometry for covalently bound azides.

Related literature

The preparation of the title compound by a slightly different procedure was reported by Chapyshev & Tomioka (2003[Chapyshev, S. V. & Tomioka, H. (2003). Bull. Chem. Soc. Jpn, 76, 2075-2089.]). For the comparable compound, 2-azido­benzyl ­bromide, see: Klapötke et al. (2003[Klapötke, T. M., Krumm, B., Piotrowski, H., Polborn, K. & Holl, G. (2003). Chem. Eur. J. 9, 687-694.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N6

  • Mr = 174.16

  • Orthorhombic, P c c n

  • a = 12.298 (5) Å

  • b = 25.896 (5) Å

  • c = 5.085 (5) Å

  • V = 1619.4 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 (2) K

  • 0.29 × 0.14 × 0.13 mm

Data collection
  • Oxford Xcalibur3 CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.899, Tmax = 0.990

  • 5871 measured reflections

  • 1578 independent reflections

  • 956 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.061

  • S = 0.94

  • 1578 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1996[Brandenburg, K. (1996). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound exhibits C–N distances [C2–N1 1.429 (2) and C6–N4 1.428 (2) Å] similar to the distance in 2-N3C6H4CH2Br [1.428 (5) Å, Klapötke et al., 2003]. The values of both azide groups are in the common range for covalent azide groups with longer Nα–Nβ distances [N1–N2 1.241 (2) and N4–N5 1.253 (2) Å] and shorter terminal Nβ–Nγ distances [N2–N3 1.133 (2) and N5–N6 1.122 (2) Å] with more triple bond character. The azide angles are slightly bent [N1–N2–N3 172.98 (18) and N4–N5–N6 172.36 (17)°].

Related literature top

The preparation of the title compound by a slightly different procedure was reported by Chapyshev & Tomioka (2003). For the comparable compound, 2-azidobenzylbromide, see: Klapötke et al. 2003.

Experimental top

The title compound was prepared according the literature [Chapyshev & Tomioka (2003)], slightly modified, e.g. the column chromatography was performed with hexane/chloroform (1:4) as an eluent. Colorless crystals were obtained by slow evaporation of a chloroform solution. 1H NMR (400 MHz, CDCl3, Me4Si): δ 7.23 (tq, 4-H, 3JH–H = 8.1 Hz, 6JH—H = 0.5 Hz, 1H), 6.89 (d, 3-H, 2H), 2.05 (m, CH3, 3H) p.p.m.; 13C NMR (400 MHz, CDCl3, Me4Si): δ 140.0/127.2/121.3/114.0 (Ar—C), 11.2 (CH3) p.p.m.; 15N NMR (400 MHz, CDCl3, MeNO2) δ -139.5 (Nβ), -149.0 (Nγ), -291.4 (Nα) p.p.m..

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction,2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of C7H6N6 with displacement ellipsoids drawn at the 50% probability level. The minor disorder component of the methyl hydrogen atoms has been omitted.
2,6-Diazidotoluene top
Crystal data top
C7H6N6F(000) = 720
Mr = 174.16Dx = 1.429 (1) Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1382 reflections
a = 12.298 (5) Åθ = 3.9–30.0°
b = 25.896 (5) ŵ = 0.10 mm1
c = 5.085 (5) ÅT = 200 K
V = 1619.4 (18) Å3Needle, colorless
Z = 80.29 × 0.14 × 0.13 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
1578 independent reflections
Radiation source: fine-focus sealed tube956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 15.9809 pixels mm-1θmax = 26.0°, θmin = 4.3°
ω scansh = 159
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1931
Tmin = 0.899, Tmax = 0.990l = 56
5871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
1578 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C7H6N6V = 1619.4 (18) Å3
Mr = 174.16Z = 8
Orthorhombic, PccnMo Kα radiation
a = 12.298 (5) ŵ = 0.10 mm1
b = 25.896 (5) ÅT = 200 K
c = 5.085 (5) Å0.29 × 0.14 × 0.13 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
1578 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
956 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.990Rint = 0.040
5871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.11 e Å3
1578 reflectionsΔρmin = 0.12 e Å3
143 parameters
Special details top

Refinement. Aromatic H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C–H = 0.95 (CaromH) and with Uiso(H) = kUeq(carrier atom), where k = 1.2 for CH. The H atoms attached to methyl C7 are disordered over two sites. These were freely refined; the occupancy of the major disorder component is 0.69 (5). The highest peak and deepest hole in the final difference map were located 0.93 Å from atom H7B and 0.32 Å from atom H7A, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.45618 (11)0.14719 (5)0.0665 (3)0.0348 (4)
C20.45326 (12)0.10499 (5)0.1031 (3)0.0353 (4)
C30.53072 (12)0.06637 (6)0.0938 (3)0.0415 (4)
H30.52710.03830.21360.050*
C40.61302 (13)0.06857 (6)0.0888 (3)0.0426 (4)
H40.66620.04200.09570.051*
C50.61819 (12)0.10957 (5)0.2622 (3)0.0405 (4)
H50.67450.11110.38990.049*
C60.54110 (12)0.14841 (5)0.2495 (3)0.0353 (4)
C70.37338 (17)0.18935 (8)0.0524 (5)0.0462 (4)
H7A0.297 (2)0.1729 (9)0.075 (5)0.042 (10)*0.69 (5)
H7B0.385 (3)0.2132 (11)0.190 (8)0.073 (11)*0.69 (5)
H7C0.381 (3)0.2054 (10)0.129 (7)0.060 (11)*0.69 (5)
H7D0.323 (4)0.1895 (16)0.102 (10)0.010 (16)*0.31 (5)
H7E0.334 (4)0.193 (2)0.231 (14)0.04 (2)*0.31 (5)
H7F0.410 (4)0.2239 (18)0.031 (10)0.015 (18)*0.31 (5)
N10.36418 (10)0.10504 (5)0.2837 (2)0.0440 (4)
N20.35797 (10)0.06789 (5)0.4371 (3)0.0419 (3)
N30.34235 (11)0.03628 (5)0.5865 (3)0.0564 (4)
N40.54156 (10)0.19271 (4)0.4164 (3)0.0440 (3)
N50.61378 (11)0.19404 (4)0.5897 (3)0.0409 (3)
N60.67279 (12)0.19998 (5)0.7553 (3)0.0528 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (8)0.0333 (8)0.0382 (9)0.0034 (8)0.0065 (8)0.0026 (8)
C20.0346 (9)0.0381 (8)0.0332 (9)0.0052 (8)0.0037 (8)0.0030 (8)
C30.0440 (9)0.0367 (8)0.0436 (10)0.0011 (9)0.0053 (9)0.0017 (8)
C40.0415 (9)0.0384 (8)0.0480 (10)0.0065 (9)0.0043 (10)0.0052 (9)
C50.0379 (9)0.0444 (9)0.0393 (9)0.0016 (9)0.0016 (9)0.0050 (8)
C60.0367 (9)0.0352 (8)0.0340 (8)0.0039 (8)0.0038 (8)0.0013 (8)
C70.0428 (11)0.0422 (10)0.0537 (13)0.0029 (11)0.0036 (12)0.0064 (12)
N10.0455 (8)0.0406 (7)0.0460 (8)0.0019 (7)0.0033 (7)0.0088 (7)
N20.0408 (8)0.0462 (8)0.0387 (8)0.0031 (8)0.0005 (7)0.0000 (8)
N30.0611 (9)0.0572 (9)0.0510 (9)0.0003 (8)0.0051 (8)0.0148 (8)
N40.0455 (8)0.0477 (8)0.0388 (8)0.0006 (7)0.0065 (8)0.0063 (7)
N50.0455 (8)0.0416 (8)0.0357 (8)0.0052 (7)0.0065 (8)0.0007 (7)
N60.0545 (8)0.0650 (10)0.0389 (9)0.0080 (8)0.0047 (8)0.0028 (7)
Geometric parameters (Å, º) top
C1—C21.393 (2)C6—N41.4270 (19)
C1—C61.399 (2)C7—H7A1.04 (3)
C1—C71.495 (2)C7—H7B0.94 (3)
C2—C31.382 (2)C7—H7C1.02 (3)
C2—N11.4294 (19)C7—H7D1.00 (5)
C3—C41.375 (2)C7—H7E1.04 (7)
C3—H30.9500C7—H7F1.01 (5)
C4—C51.382 (2)N1—N21.2410 (17)
C4—H40.9500N2—N31.1331 (17)
C5—C61.3836 (19)N4—N51.2518 (19)
C5—H50.9500N5—N61.1222 (17)
C2—C1—C6116.67 (13)H7A—C7—H7C111 (2)
C2—C1—C7121.72 (16)H7B—C7—H7C113 (2)
C6—C1—C7121.60 (15)C1—C7—H7D118 (2)
C3—C2—C1121.93 (15)H7A—C7—H7D62 (2)
C3—C2—N1123.42 (13)H7B—C7—H7D132 (3)
C1—C2—N1114.65 (14)H7C—C7—H7D49 (2)
C4—C3—C2120.03 (15)C1—C7—H7E110 (2)
C4—C3—H3120.0H7A—C7—H7E61 (3)
C2—C3—H3120.0H7B—C7—H7E50 (3)
C3—C4—C5119.80 (15)H7C—C7—H7E143 (3)
C3—C4—H4120.1H7D—C7—H7E113 (3)
C5—C4—H4120.1C1—C7—H7F110 (2)
C4—C5—C6119.80 (14)H7A—C7—H7F141 (2)
C4—C5—H5120.1H7B—C7—H7F55 (2)
C6—C5—H5120.1H7C—C7—H7F60 (2)
C5—C6—C1121.76 (13)H7D—C7—H7F101 (3)
C5—C6—N4123.63 (14)H7E—C7—H7F103 (3)
C1—C6—N4114.61 (13)N2—N1—C2116.77 (13)
C1—C7—H7A108.3 (11)N3—N2—N1172.70 (16)
C1—C7—H7B109.8 (17)N5—N4—C6116.34 (13)
H7A—C7—H7B109 (3)N6—N5—N4172.29 (15)
C1—C7—H7C106.0 (15)
C6—C1—C2—C30.6 (2)C4—C5—C6—N4178.50 (14)
C7—C1—C2—C3178.86 (16)C2—C1—C6—C50.2 (2)
C6—C1—C2—N1179.09 (12)C7—C1—C6—C5179.69 (16)
C7—C1—C2—N11.5 (2)C2—C1—C6—N4179.16 (13)
C1—C2—C3—C40.8 (2)C7—C1—C6—N40.3 (2)
N1—C2—C3—C4178.84 (13)C3—C2—N1—N20.2 (2)
C2—C3—C4—C50.2 (2)C1—C2—N1—N2179.43 (13)
C3—C4—C5—C60.6 (2)C5—C6—N4—N53.5 (2)
C4—C5—C6—C10.8 (2)C1—C6—N4—N5177.14 (13)

Experimental details

Crystal data
Chemical formulaC7H6N6
Mr174.16
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)200
a, b, c (Å)12.298 (5), 25.896 (5), 5.085 (5)
V3)1619.4 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.14 × 0.13
Data collection
DiffractometerOxford Xcalibur3 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.899, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5871, 1578, 956
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.061, 0.94
No. of reflections1578
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction,2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1996).

 

Acknowledgements

The University of Munich, the Fonds der Chemischen Industrie, and the Deutsche Forschungsgemeinschaft (KL 636/10–1) are gratefully acknowledged for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationChapyshev, S. V. & Tomioka, H. (2003). Bull. Chem. Soc. Jpn, 76, 2075–2089.  Web of Science CrossRef CAS Google Scholar
First citationKlapötke, T. M., Krumm, B., Piotrowski, H., Polborn, K. & Holl, G. (2003). Chem. Eur. J. 9, 687–694.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds