metal-organic compounds
trans-Tetraaquabis(nicotinamide-κN)cadmium(II) biphenyl-4,4′-disulfonate
aDepartment of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China, bCentre of Experimental Teaching of Common Basic Courses, South China Agricultural University, Guangzhou 510642, People's Republic of China, and cSchool of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: chunyuan-li@163.com
In the title compound, [Cd(C6H6N2O)2(H2O)4](C10H8O6S2), the CdII ion is located on a crystallographic inversion centre. An octahedral coordination geometry is defined by four water molecules in one plane, and two trans N-atom donors of the nicotinamide ligands. The biphenyl-4,4′-disulfonate anion also lies on a crystallographic inversion centre. In the the complex cations are connected to the counter-anions via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For related literature, see: Beatty (2001); Christer et al. (2004); Holman et al. (2001); Lian & Li (2007a,b,c,d).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808002390/fj2097sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808002390/fj2097Isup2.hkl
Nicotinamide (0.050 g, 0.4 mmol) was added with constant stirring to an aqueous solution (10 mL) of Cd(CH3COO)2.2H2O (0.058 g, 0.2 mmol). The solution was then treated with disodium biphenyl-4,4'-disulfonate (0.070 g, 0.2 mmol). Colourless crystals of the title complex were collected by slow evaporation at room temperature after 7 days, (80% yield based on Cd).
All the non-H atoms were refined with anisotropic thermal parameters.
H atoms attached to C or N atoms were placed in geometrically calculated positions (C—H = 0.93 Å, N–H=0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C or N).
The O-bound H atoms were located in difference maps and refined as riding on the attached O atoms, with Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (1), with the atom labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Symmetry codes:(i) -x, y, -z + 1/2; (ii): -x + 1, -y, -z + 1. | |
Fig. 2. The three dimensional H-bonded network viewed from b axis direction. Hydrogen bonds are shown as dashed lines. |
[Cd(C6H6N2O)2(H2O)4](C10H8O6S2) | F(000) = 752 |
Mr = 741.02 | Dx = 1.695 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 7656 reflections |
a = 14.742 (8) Å | θ = 12–18° |
b = 6.899 (4) Å | µ = 0.97 mm−1 |
c = 15.292 (8) Å | T = 298 K |
β = 110.980 (9)° | Block, colourless |
V = 1452.2 (13) Å3 | 0.40 × 0.36 × 0.31 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 2842 independent reflections |
Radiation source: fine-focus sealed tube | 2477 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 26.0°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→12 |
Tmin = 0.682, Tmax = 0.741 | k = −8→7 |
7656 measured reflections | l = −13→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3728P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2842 reflections | Δρmax = 0.58 e Å−3 |
197 parameters | Δρmin = −1.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.052 (2) |
[Cd(C6H6N2O)2(H2O)4](C10H8O6S2) | V = 1452.2 (13) Å3 |
Mr = 741.02 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 14.742 (8) Å | µ = 0.97 mm−1 |
b = 6.899 (4) Å | T = 298 K |
c = 15.292 (8) Å | 0.40 × 0.36 × 0.31 mm |
β = 110.980 (9)° |
Bruker SMART APEX CCD diffractometer | 2842 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2477 reflections with I > 2σ(I) |
Tmin = 0.682, Tmax = 0.741 | Rint = 0.034 |
7656 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.58 e Å−3 |
2842 reflections | Δρmin = −1.19 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.0000 | 0.5000 | 0.02772 (14) | |
S1 | 0.31842 (5) | 0.50038 (6) | 0.18505 (5) | 0.03230 (18) | |
O1 | 0.03394 (9) | 0.0836 (3) | 0.40310 (11) | 0.0485 (4) | |
O2 | 0.30985 (11) | 0.3259 (3) | 0.12698 (14) | 0.0544 (5) | |
O3 | 0.39387 (14) | 0.4851 (2) | 0.27876 (16) | 0.0462 (5) | |
O4 | 0.32299 (12) | 0.6768 (3) | 0.13379 (15) | 0.0582 (5) | |
O5 | 0.51977 (12) | −0.2553 (3) | 0.41016 (16) | 0.0738 (7) | |
H5A | 0.4803 | −0.3193 | 0.3698 | 0.089* | |
H5B | 0.5698 | −0.2876 | 0.3976 | 0.089* | |
O6 | 0.51991 (12) | 0.2033 (3) | 0.38506 (14) | 0.0657 (6) | |
H6A | 0.4802 | 0.2889 | 0.3531 | 0.079* | |
H6B | 0.5701 | 0.2527 | 0.3817 | 0.079* | |
N1 | 0.34204 (14) | −0.00860 (19) | 0.41343 (14) | 0.0296 (4) | |
N2 | 0.12317 (10) | −0.1123 (3) | 0.52234 (10) | 0.0370 (4) | |
H2A | 0.0802 | −0.1148 | 0.5484 | 0.044* | |
H2B | 0.1766 | −0.1754 | 0.5469 | 0.044* | |
C1 | 0.27511 (17) | −0.0072 (2) | 0.45320 (16) | 0.0279 (5) | |
H1 | 0.2932 | −0.0044 | 0.5180 | 0.033* | |
C2 | 0.18103 (17) | −0.0100 (2) | 0.39791 (17) | 0.0277 (5) | |
C3 | 0.15424 (17) | −0.0111 (2) | 0.29767 (16) | 0.0316 (5) | |
H3 | 0.0888 | −0.0066 | 0.2600 | 0.038* | |
C4 | 0.22217 (18) | −0.0186 (3) | 0.25694 (16) | 0.0334 (5) | |
H4 | 0.2057 | −0.0249 | 0.1923 | 0.040* | |
C5 | 0.31554 (17) | −0.0164 (2) | 0.31683 (16) | 0.0320 (5) | |
H5 | 0.3645 | −0.0202 | 0.2919 | 0.038* | |
C6 | 0.10639 (16) | −0.0082 (2) | 0.44191 (16) | 0.0302 (5) | |
C7 | 0.21328 (17) | 0.5140 (2) | 0.20881 (19) | 0.0303 (5) | |
C8 | 0.21293 (18) | 0.4744 (3) | 0.30073 (19) | 0.0348 (5) | |
H8 | 0.2707 | 0.4455 | 0.3494 | 0.042* | |
C9 | 0.12884 (18) | 0.4791 (3) | 0.31652 (19) | 0.0349 (5) | |
H9 | 0.1271 | 0.4538 | 0.3756 | 0.042* | |
C10 | 0.04503 (16) | 0.5228 (2) | 0.24163 (18) | 0.0311 (5) | |
C11 | 0.04791 (14) | 0.5662 (3) | 0.15037 (15) | 0.0353 (4) | |
H11 | −0.0095 | 0.5976 | 0.1017 | 0.042* | |
C12 | 0.13142 (14) | 0.5621 (3) | 0.13407 (14) | 0.0342 (4) | |
H12 | 0.1338 | 0.5904 | 0.0754 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01281 (17) | 0.03481 (19) | 0.03689 (19) | −0.00051 (5) | 0.01054 (11) | −0.00146 (6) |
S1 | 0.0174 (3) | 0.0352 (3) | 0.0500 (4) | −0.00152 (14) | 0.0190 (3) | −0.00351 (17) |
O1 | 0.0210 (7) | 0.0697 (11) | 0.0582 (9) | 0.0136 (8) | 0.0181 (6) | 0.0197 (9) |
O2 | 0.0275 (8) | 0.0627 (11) | 0.0810 (11) | −0.0076 (8) | 0.0290 (8) | −0.0316 (10) |
O3 | 0.0196 (9) | 0.0565 (11) | 0.0619 (12) | −0.0001 (5) | 0.0136 (8) | −0.0056 (6) |
O4 | 0.0369 (9) | 0.0594 (11) | 0.0942 (13) | 0.0054 (8) | 0.0427 (9) | 0.0243 (10) |
O5 | 0.0318 (8) | 0.0794 (13) | 0.1183 (16) | −0.0128 (9) | 0.0366 (10) | −0.0596 (13) |
O6 | 0.0289 (8) | 0.0791 (13) | 0.0921 (13) | 0.0042 (8) | 0.0254 (8) | 0.0459 (11) |
N1 | 0.0152 (9) | 0.0393 (10) | 0.0338 (9) | −0.0004 (5) | 0.0083 (7) | −0.0008 (6) |
N2 | 0.0186 (7) | 0.0542 (11) | 0.0399 (9) | 0.0035 (7) | 0.0125 (6) | 0.0069 (8) |
C1 | 0.0161 (11) | 0.0381 (12) | 0.0295 (10) | −0.0004 (6) | 0.0082 (8) | 0.0001 (6) |
C2 | 0.0189 (11) | 0.0288 (10) | 0.0353 (12) | 0.0000 (6) | 0.0095 (9) | −0.0004 (6) |
C3 | 0.0184 (11) | 0.0377 (12) | 0.0340 (12) | 0.0001 (6) | 0.0036 (9) | 0.0009 (7) |
C4 | 0.0283 (12) | 0.0421 (12) | 0.0277 (10) | −0.0005 (7) | 0.0075 (9) | −0.0006 (7) |
C5 | 0.0228 (11) | 0.0398 (11) | 0.0362 (11) | 0.0007 (7) | 0.0139 (9) | −0.0008 (7) |
C6 | 0.0154 (10) | 0.0387 (12) | 0.0352 (11) | −0.0019 (6) | 0.0074 (8) | −0.0013 (7) |
C7 | 0.0183 (11) | 0.0288 (10) | 0.0499 (13) | −0.0005 (6) | 0.0197 (10) | −0.0014 (7) |
C8 | 0.0212 (10) | 0.0388 (10) | 0.0483 (13) | 0.0048 (7) | 0.0172 (9) | 0.0074 (8) |
C9 | 0.0254 (11) | 0.0388 (11) | 0.0469 (12) | 0.0054 (7) | 0.0209 (10) | 0.0098 (8) |
C10 | 0.0200 (11) | 0.0287 (9) | 0.0508 (12) | 0.0002 (7) | 0.0202 (9) | −0.0007 (8) |
C11 | 0.0195 (9) | 0.0427 (11) | 0.0454 (11) | 0.0000 (9) | 0.0139 (8) | −0.0004 (10) |
C12 | 0.0237 (9) | 0.0419 (10) | 0.0412 (10) | −0.0029 (9) | 0.0169 (8) | −0.0012 (10) |
Cd1—N1i | 2.230 (2) | C1—C2 | 1.341 (3) |
Cd1—N1 | 2.230 (2) | C1—H1 | 0.9300 |
Cd1—O5i | 2.316 (2) | C2—C3 | 1.439 (3) |
Cd1—O5 | 2.316 (2) | C2—C6 | 1.481 (3) |
Cd1—O6i | 2.3479 (19) | C3—C4 | 1.357 (4) |
Cd1—O6 | 2.3479 (19) | C3—H3 | 0.9300 |
S1—O4 | 1.463 (2) | C4—C5 | 1.353 (3) |
S1—O3 | 1.470 (2) | C4—H4 | 0.9300 |
S1—O2 | 1.4742 (19) | C5—H5 | 0.9300 |
S1—C7 | 1.717 (2) | C7—C12 | 1.373 (3) |
O1—C6 | 1.200 (3) | C7—C8 | 1.434 (4) |
O5—H5A | 0.8108 | C8—C9 | 1.346 (3) |
O5—H5B | 0.8551 | C8—H8 | 0.9300 |
O6—H6A | 0.8517 | C9—C10 | 1.384 (4) |
O6—H6B | 0.8328 | C9—H9 | 0.9300 |
N1—C1 | 1.332 (3) | C10—C10ii | 1.439 (4) |
N1—C5 | 1.387 (3) | C10—C11 | 1.443 (3) |
N2—C6 | 1.368 (3) | C11—C12 | 1.341 (3) |
N2—H2A | 0.8600 | C11—H11 | 0.9300 |
N2—H2B | 0.8600 | C12—H12 | 0.9300 |
N1i—Cd1—N1 | 180.00 (6) | C2—C1—H1 | 120.7 |
N1i—Cd1—O5i | 87.37 (7) | C1—C2—C3 | 119.9 (2) |
N1—Cd1—O5i | 92.63 (7) | C1—C2—C6 | 118.8 (2) |
N1i—Cd1—O5 | 92.63 (6) | C3—C2—C6 | 121.2 (2) |
N1—Cd1—O5 | 87.37 (7) | C4—C3—C2 | 121.5 (2) |
O5i—Cd1—O5 | 180.0 | C4—C3—H3 | 119.2 |
N1i—Cd1—O6i | 87.44 (7) | C2—C3—H3 | 119.2 |
N1—Cd1—O6i | 92.56 (7) | C5—C4—C3 | 115.4 (2) |
O5i—Cd1—O6i | 86.23 (10) | C5—C4—H4 | 122.3 |
O5—Cd1—O6i | 93.77 (10) | C3—C4—H4 | 122.3 |
N1i—Cd1—O6 | 92.56 (7) | C4—C5—N1 | 123.5 (2) |
N1—Cd1—O6 | 87.44 (7) | C4—C5—H5 | 118.3 |
O5i—Cd1—O6 | 93.77 (10) | N1—C5—H5 | 118.3 |
O5—Cd1—O6 | 86.23 (10) | O1—C6—N2 | 124.3 (2) |
O6i—Cd1—O6 | 180.0 | O1—C6—C2 | 117.0 (2) |
O4—S1—O3 | 114.71 (11) | N2—C6—C2 | 118.65 (18) |
O4—S1—O2 | 111.55 (16) | C12—C7—C8 | 123.5 (2) |
O3—S1—O2 | 113.62 (11) | C12—C7—S1 | 115.34 (19) |
O4—S1—C7 | 106.64 (9) | C8—C7—S1 | 121.17 (18) |
O3—S1—C7 | 102.88 (13) | C9—C8—C7 | 119.9 (2) |
O2—S1—C7 | 106.44 (9) | C9—C8—H8 | 120.1 |
Cd1—O5—H5A | 131.1 | C7—C8—H8 | 120.1 |
Cd1—O5—H5B | 129.3 | C8—C9—C10 | 117.6 (2) |
H5A—O5—H5B | 97.4 | C8—C9—H9 | 121.2 |
Cd1—O6—H6A | 126.9 | C10—C9—H9 | 121.2 |
Cd1—O6—H6B | 130.0 | C9—C10—C10ii | 117.4 (3) |
H6A—O6—H6B | 97.1 | C9—C10—C11 | 121.3 (2) |
C1—N1—C5 | 120.96 (19) | C10ii—C10—C11 | 121.4 (3) |
C1—N1—Cd1 | 121.05 (16) | C12—C11—C10 | 121.50 (19) |
C5—N1—Cd1 | 117.99 (15) | C12—C11—H11 | 119.3 |
C6—N2—H2A | 120.0 | C10—C11—H11 | 119.3 |
C6—N2—H2B | 120.0 | C11—C12—C7 | 116.2 (2) |
H2A—N2—H2B | 120.0 | C11—C12—H12 | 121.9 |
N1—C1—C2 | 118.7 (2) | C7—C12—H12 | 121.9 |
N1—C1—H1 | 120.7 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3iii | 0.81 | 2.03 | 2.832 (3) | 171 |
O5—H5B···O4iv | 0.86 | 1.83 | 2.676 (2) | 172 |
O6—H6A···O3 | 0.85 | 1.93 | 2.777 (3) | 178 |
O6—H6B···O2v | 0.83 | 1.89 | 2.716 (3) | 171 |
N2—H2A···O1vi | 0.86 | 2.08 | 2.932 (2) | 171 |
N2—H2B···O2vii | 0.86 | 2.17 | 3.025 (3) | 172 |
Symmetry codes: (iii) x, y−1, z; (iv) −x+1, y−1, −z+1/2; (v) −x+1, y, −z+1/2; (vi) −x, −y, −z+1; (vii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C6H6N2O)2(H2O)4](C10H8O6S2) |
Mr | 741.02 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 298 |
a, b, c (Å) | 14.742 (8), 6.899 (4), 15.292 (8) |
β (°) | 110.980 (9) |
V (Å3) | 1452.2 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.97 |
Crystal size (mm) | 0.40 × 0.36 × 0.31 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.682, 0.741 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7656, 2842, 2477 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.092, 1.07 |
No. of reflections | 2842 |
No. of parameters | 197 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −1.19 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3i | 0.81 | 2.03 | 2.832 (3) | 171 |
O5—H5B···O4ii | 0.86 | 1.83 | 2.676 (2) | 172 |
O6—H6A···O3 | 0.85 | 1.93 | 2.777 (3) | 178 |
O6—H6B···O2iii | 0.83 | 1.89 | 2.716 (3) | 171 |
N2—H2A···O1iv | 0.86 | 2.08 | 2.932 (2) | 171 |
N2—H2B···O2v | 0.86 | 2.17 | 3.025 (3) | 172 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1, −z+1/2; (iii) −x+1, y, −z+1/2; (iv) −x, −y, −z+1; (v) x, −y, z+1/2. |
Acknowledgements
The authors thank the President's Foundation of South China Agricultural University (Nos. 2006X013, 2007Y006 and 2007 K031) for financial support.
References
Beatty, A. M. (2001). CrystEngComm, 3, 1–13. Web of Science CrossRef Google Scholar
Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christer, B. A., John, P. & Jesús, V. M. (2004). CrystEngComm, 6, 413–418. Google Scholar
Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107–118. Web of Science CrossRef PubMed CAS Google Scholar
Lian, Z.-X. & Li, H.-H. (2007a). Acta Cryst. E63, m853–m855. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lian, Z.-X. & Li, H.-H. (2007b). Acta Cryst. E63, m939–m941. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lian, Z.-X. & Li, H.-H. (2007c). Acta Cryst. E63, m731–m733. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lian, Z.-X. & Li, H.-H. (2007d). Acta Cryst. E63, m734–m736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The strong and directional nature of hydrogen bonds is exploited in the organized self-assembly of molecules in the solid state. Amides are commonly used functional groups in crystal engineering owing to the inherent coordination and hydrogen bonding donor/acceptor functionalities, and were used to construct extended frameworks sustained both by hydrogen bonds and coordination bonds (Beatty 2001; Christer et al., 2004). On the other hand, the sulfonate group is a suitable hydrogen-bond acceptor, and has been used to build extended frameworks. (Holman et al., 2001; Lian & Li, 2007a,b,c,d) In this paper, we report the synthesis and crystal structure of the title compound.
In the title compound, the metal centre, located on a crystallographic inversion centre, is in an octahedral geometry defined by four O atoms from four aqua ligands,respectively, and two trans-positioned N-atom donors of the nicotinamide ligands, as shown in Fig 1. The amide substituents are twisted away from the conformation in the pyridine ring plane by 37.6 (6)°. The biphenyl-4,4'-disulfonate anion also lies on a crystallographic inversion centre. The planes through phenyl ring in biphenyl-4,4'-disulfonate are twisted by 28.5 (7)°. In the crystal structure, all the amide groups are involved in amide-amide hydrogen bonded linkage in head to head fashion leading to infinite chains of the cations. These chains are linked by hydrogen bonds formed by the remaining N—H protons on the nicotinamide and sulfonate oxygen atoms, and coordinated water molecules and sulfonate oxygen atoms into three-dimensional networks as shown in Fig 2.