organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl N-phenyl­carbamate

aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, and bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
*Correspondence e-mail: fanqiqu@whu.edu.cn

(Received 9 December 2007; accepted 24 December 2007; online 9 January 2008)

The title compound, C13H10N2O4, was synthesized as an inter­mediate for the preparation of ureas. The two aromatic rings are twisted about the central carbamate group with a C—C—N—C torsion angle of 139.6 (2)° and a C—C—O—C torsion angle of 95.9 (2)°. The mol­ecules are linked into one-dimensional chains by N—H⋯O hydrogen bonds along the b axis. Weak inter­actions between O atoms of the nitro groups (O⋯O = 3.012 Å) connect two adjacent chains.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Izdebski & Pawlak (1989[Izdebski, J. & Pawlak, D. (1989). Synthesis, 6, 423-425.]); Olma et al. (2006[Olma, S., Ermert, J. & Coenen, H. H. (2006). J. Label. Compd. Radiopharm. 49, 1037-1050.]); Tye et al. (2002[Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett. 43, 155-158.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21

  • a = 6.0170 (2) Å

  • b = 5.0650 (1) Å

  • c = 18.8960 (5) Å

  • β = 92.538 (1)°

  • V = 575.31 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90 (2) K

  • 0.50 × 0.40 × 0.26 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.946, Tmax = 0.971

  • 2630 measured reflections

  • 1473 independent reflections

  • 1363 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.14

  • 1473 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.05 2.903 (3) 164
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995[Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

The title compound (I), along with other 4-nitrophenyl carbamates, are important intermediates for the synthesis of ureas (Olma, et al. 2006; Izdebski & Pawlak, 1989). Although it has been used in organic sythesis for a long time, the crystal structure, as far as we know, is reported here for the first time.

The compound, two aromatic rings connected by a carbamate group, is not planar as would be expected. This is evidenced by the dihedral angles between the nitrophenyl ring and the carbamate, C13—C8—O2—C7=95.9 (2)°, and the benzyl ring and the carbamate, C2—C1—N1—C7=139.6 (2)°. Bond lengths and angles for (I) are within normal ranges (Allen et al., 1987). The molecules form one-dimensional chains formed through N—H···O hydrogen bonds along the b axis (Table 1). In addition, intermolecular O···O interactions exists between nitro groups in neighboring chains (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Izdebski & Pawlak (1989); Olma et al. (2006); Tye et al. (2002).

Experimental top

Aniline (1.0 g, 10.7 mmol) was added dropwise to a round-bottom flask containing 4-nitrophenyl chloroformate (2.2 g, 10.9 mmol) and pyridine (0.9 ml, 11.1 mmol) in 20 ml me thylene chloride cooled with ice water. After the solutuion was warmed to ambient temperature, the mixture was refluxed overnight with stirring. The solution was then washed with 1 N NaHCO3, water and brine, and then dried with anhydrous Na2SO4. After removal of the solvent, the product was recovered as a yellow solid (2.5 g, 90%) (Tye, et al. 2002). Colorless crystals of (I) were obtained by recrystallization from ethyl acetate.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 Å (CArH), and 0.88 Å (NH1). Uiso(H) values were set to 1.2Ueq for all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram of (I) along a axis.
4-Nitrophenyl N-phenylcarbamate top
Crystal data top
C13H10N2O4F(000) = 268
Mr = 258.23Dx = 1.491 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 1469 reflections
a = 6.0170 (2) Åθ = 1–27.5°
b = 5.0650 (1) ŵ = 0.11 mm1
c = 18.8960 (5) ÅT = 90 K
β = 92.538 (1)°Block, colorless
V = 575.31 (3) Å30.50 × 0.40 × 0.26 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1473 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.1°
ω scans at fixed χ = 55°h = 77
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 66
Tmin = 0.946, Tmax = 0.971l = 2424
2630 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1763P]
where P = (Fo2 + 2Fc2)/3
1473 reflections(Δ/σ)max = 0.009
172 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C13H10N2O4V = 575.31 (3) Å3
Mr = 258.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0170 (2) ŵ = 0.11 mm1
b = 5.0650 (1) ÅT = 90 K
c = 18.8960 (5) Å0.50 × 0.40 × 0.26 mm
β = 92.538 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1473 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1363 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.971Rint = 0.020
2630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
1473 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9665 (3)0.7781 (5)0.84935 (11)0.0179 (5)
N10.7888 (3)0.8052 (4)0.79739 (10)0.0185 (4)
H10.74430.96550.78570.022*
N20.0763 (3)0.1088 (4)0.56535 (9)0.0180 (4)
O10.7161 (3)0.3675 (4)0.77761 (9)0.0227 (4)
O20.5362 (3)0.6890 (3)0.71426 (8)0.0196 (4)
O30.1087 (2)0.1712 (4)0.58598 (9)0.0248 (4)
O40.1657 (3)0.2175 (4)0.51627 (8)0.0231 (4)
C21.1431 (4)0.9546 (5)0.84631 (12)0.0219 (5)
H21.14141.08830.81100.026*
C31.3226 (4)0.9341 (6)0.89534 (12)0.0248 (5)
H31.44321.05460.89350.030*
C41.3255 (4)0.7399 (6)0.94631 (12)0.0257 (6)
H41.44890.72490.97920.031*
C51.1480 (4)0.5660 (6)0.94961 (12)0.0261 (5)
H51.14980.43300.98510.031*
C60.9670 (4)0.5853 (6)0.90111 (11)0.0214 (5)
H60.84510.46690.90370.026*
C70.6852 (4)0.5994 (5)0.76518 (11)0.0169 (4)
C80.4214 (4)0.4908 (5)0.67556 (11)0.0177 (5)
C90.5166 (3)0.3802 (5)0.61711 (11)0.0190 (5)
H90.65780.43810.60270.023*
C100.4012 (4)0.1825 (5)0.58006 (11)0.0187 (5)
H100.46250.10170.54000.022*
C110.1954 (3)0.1055 (5)0.60271 (11)0.0161 (4)
C120.0975 (4)0.2213 (5)0.65993 (11)0.0189 (5)
H120.04570.16720.67350.023*
C130.2135 (4)0.4187 (5)0.69708 (11)0.0198 (5)
H130.15080.50240.73650.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (10)0.0182 (11)0.0183 (9)0.0038 (10)0.0015 (7)0.0028 (9)
N10.0191 (9)0.0118 (9)0.0241 (9)0.0013 (8)0.0045 (7)0.0005 (8)
N20.0152 (9)0.0161 (10)0.0224 (8)0.0008 (8)0.0022 (7)0.0029 (9)
O10.0238 (8)0.0150 (9)0.0286 (8)0.0000 (7)0.0060 (6)0.0001 (7)
O20.0188 (8)0.0154 (8)0.0240 (7)0.0009 (7)0.0058 (6)0.0014 (7)
O30.0153 (7)0.0257 (10)0.0334 (8)0.0076 (8)0.0006 (6)0.0016 (8)
O40.0207 (8)0.0215 (9)0.0269 (8)0.0002 (8)0.0016 (6)0.0052 (8)
C20.0230 (11)0.0208 (13)0.0218 (10)0.0031 (10)0.0008 (8)0.0009 (10)
C30.0205 (11)0.0267 (14)0.0269 (11)0.0036 (10)0.0020 (8)0.0045 (10)
C40.0218 (11)0.0264 (14)0.0280 (11)0.0036 (11)0.0076 (9)0.0041 (11)
C50.0303 (13)0.0235 (13)0.0238 (10)0.0022 (12)0.0061 (9)0.0027 (11)
C60.0215 (11)0.0204 (12)0.0221 (10)0.0020 (11)0.0017 (8)0.0002 (10)
C70.0163 (10)0.0155 (11)0.0190 (9)0.0017 (9)0.0008 (7)0.0003 (9)
C80.0188 (10)0.0130 (11)0.0209 (10)0.0012 (10)0.0049 (8)0.0010 (9)
C90.0127 (9)0.0196 (12)0.0244 (10)0.0032 (10)0.0012 (8)0.0019 (10)
C100.0151 (10)0.0198 (11)0.0212 (9)0.0010 (9)0.0013 (8)0.0002 (9)
C110.0133 (10)0.0146 (10)0.0200 (9)0.0004 (9)0.0039 (7)0.0013 (9)
C120.0151 (10)0.0201 (13)0.0215 (10)0.0008 (9)0.0004 (8)0.0019 (9)
C130.0191 (10)0.0201 (12)0.0203 (9)0.0011 (10)0.0012 (8)0.0004 (9)
Geometric parameters (Å, º) top
C1—C61.382 (3)C4—C51.388 (4)
C1—C21.392 (4)C4—H40.9500
C1—N11.426 (3)C5—C61.396 (3)
N1—C71.346 (3)C5—H50.9500
N1—H10.8800C6—H60.9500
N2—O41.224 (3)C8—C131.381 (3)
N2—O31.237 (2)C8—C91.385 (3)
N2—C111.465 (3)C9—C101.390 (3)
O1—C71.210 (3)C9—H90.9500
O2—C71.364 (3)C10—C111.384 (3)
O2—C81.405 (3)C10—H100.9500
C2—C31.395 (3)C11—C121.385 (3)
C2—H20.9500C12—C131.391 (3)
C3—C41.376 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C6—C1—C2120.4 (2)C1—C6—H6120.3
C6—C1—N1122.2 (2)C5—C6—H6120.3
C2—C1—N1117.4 (2)O1—C7—N1126.8 (2)
C7—N1—C1123.7 (2)O1—C7—O2123.4 (2)
C7—N1—H1118.1N1—C7—O2109.8 (2)
C1—N1—H1118.1C13—C8—C9122.7 (2)
O4—N2—O3123.8 (2)C13—C8—O2117.8 (2)
O4—N2—C11118.45 (18)C9—C8—O2119.5 (2)
O3—N2—C11117.76 (19)C8—C9—C10118.6 (2)
C7—O2—C8114.97 (19)C8—C9—H9120.7
C3—C2—C1119.7 (2)C10—C9—H9120.7
C3—C2—H2120.2C11—C10—C9118.8 (2)
C1—C2—H2120.2C11—C10—H10120.6
C4—C3—C2120.2 (2)C9—C10—H10120.6
C4—C3—H3119.9C10—C11—C12122.7 (2)
C2—C3—H3119.9C10—C11—N2119.0 (2)
C3—C4—C5120.0 (2)C12—C11—N2118.30 (19)
C3—C4—H4120.0C11—C12—C13118.5 (2)
C5—C4—H4120.0C11—C12—H12120.8
C4—C5—C6120.4 (2)C13—C12—H12120.8
C4—C5—H5119.8C8—C13—C12118.8 (2)
C6—C5—H5119.8C8—C13—H13120.6
C1—C6—C5119.4 (2)C12—C13—H13120.6
C6—C1—N1—C740.3 (3)C7—O2—C8—C985.5 (3)
C2—C1—N1—C7139.6 (2)C13—C8—C9—C102.2 (4)
C6—C1—C2—C30.8 (4)O2—C8—C9—C10179.3 (2)
N1—C1—C2—C3179.1 (2)C8—C9—C10—C110.5 (3)
C1—C2—C3—C40.2 (4)C9—C10—C11—C121.4 (4)
C2—C3—C4—C50.9 (4)C9—C10—C11—N2178.0 (2)
C3—C4—C5—C60.5 (4)O4—N2—C11—C101.8 (3)
C2—C1—C6—C51.1 (4)O3—N2—C11—C10179.0 (2)
N1—C1—C6—C5178.8 (2)O4—N2—C11—C12177.6 (2)
C4—C5—C6—C10.5 (4)O3—N2—C11—C121.6 (3)
C1—N1—C7—O14.5 (4)C10—C11—C12—C131.6 (4)
C1—N1—C7—O2174.95 (18)N2—C11—C12—C13177.8 (2)
C8—O2—C7—O11.1 (3)C9—C8—C13—C122.0 (4)
C8—O2—C7—N1178.43 (18)O2—C8—C13—C12179.5 (2)
C7—O2—C8—C1395.9 (2)C11—C12—C13—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.052.903 (3)164
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)6.0170 (2), 5.0650 (1), 18.8960 (5)
β (°) 92.538 (1)
V3)575.31 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.40 × 0.26
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.946, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2630, 1473, 1363
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.14
No. of reflections1473
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: COLLECT (Nonius, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL/PC (Sheldrick, 1995), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.052.903 (3)163.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

FQ and Y-HX thank Dr Sihui Long for helpful discussions during the preparation of this paper.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationIzdebski, J. & Pawlak, D. (1989). Synthesis, 6, 423–425.  Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOlma, S., Ermert, J. & Coenen, H. H. (2006). J. Label. Compd. Radiopharm. 49, 1037–1050.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett. 43, 155–158.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds