organic compounds
3-(2-Nitrophenoxy)phthalonitrile
aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, People's Republic of China, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: zhangxianfu@tsinghua.org.cn
In the title compound, C14H7N3O3, the dihedral angle between the two arene units is 62.57 (12)°.
Related literature
For related literature, see: Atalay et al. (2003, 2004); Cave et al. (1986); Köysal et al. (2004); Leznoff & Lever (1989–1996); McKeown (1998); Ocak Ískeleli (2007); Ocak et al. (2003), Sharman & van Lier(2003).
Experimental
Crystal data
|
Data collection: XSCANS (Bruker, 1997); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536807067797/gd2031sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067797/gd2031Isup2.hkl
o-nitrophenol (1.39 g, 10.0 mmol) and 3-nitrophthalonitrile (1.73. g, 10.0 mmol) were dissolved in dry DMF (15 ml) with stirring under N2. Dry fine-powdered potassium carbonate (2.5 g, 18.1 mmol) was added over the course 1 h in equal portions every 10 min. The reaction mixture was stirred for 48 h at room temperature and poured into iced water (150 g). The product was filtered off and washed with(10% w/w) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield 1.72 g, 65%). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 397–400 K). IR data (ν _max/cm-1): 3050(Ar—H), 1591(NO2), 2230(CN). NMR δ(H) 7.34–7.39(1H, m), 7.53–7.63(2H,m), 7.81–7.93(3H,m), 8.19–8.26(1H,m).
H atoms were included as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: XSCANS (Bruker, 1997); cell
XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).Fig. 1. The molecular structure of C14H7N3O3 with 35% probability ellipsoids, showing the atom numbering scheme. |
C14H7N3O3 | F(000) = 544 |
Mr = 265.23 | Dx = 1.439 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 51 reflections |
a = 8.0814 (17) Å | θ = 5.0–12.5° |
b = 7.9899 (12) Å | µ = 0.11 mm−1 |
c = 19.068 (3) Å | T = 295 K |
β = 95.944 (15)° | Plate, colorless |
V = 1224.6 (4) Å3 | 0.4 × 0.4 × 0.1 mm |
Z = 4 |
Bruker P4 diffractometer | Rint = 0.092 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.2° |
Graphite monochromator | h = −1→9 |
ω scans | k = −9→1 |
3018 measured reflections | l = −22→22 |
2155 independent reflections | 3 standard reflections every 97 reflections |
1252 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.001P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3 |
2155 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C14H7N3O3 | V = 1224.6 (4) Å3 |
Mr = 265.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.0814 (17) Å | µ = 0.11 mm−1 |
b = 7.9899 (12) Å | T = 295 K |
c = 19.068 (3) Å | 0.4 × 0.4 × 0.1 mm |
β = 95.944 (15)° |
Bruker P4 diffractometer | Rint = 0.092 |
3018 measured reflections | 3 standard reflections every 97 reflections |
2155 independent reflections | intensity decay: none |
1252 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.20 e Å−3 |
2155 reflections | Δρmin = −0.27 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4115 (3) | 0.5913 (3) | 0.63769 (12) | 0.0683 (8) | |
O2 | 0.5975 (4) | 0.8586 (4) | 0.66974 (15) | 0.0806 (9) | |
O3 | 0.7869 (4) | 0.8009 (4) | 0.75304 (16) | 0.0932 (11) | |
N1 | 0.0726 (6) | 0.4464 (5) | 0.36401 (19) | 0.0967 (14) | |
N2 | 0.1821 (5) | 0.7972 (5) | 0.50408 (18) | 0.0822 (11) | |
N3 | 0.6493 (4) | 0.7811 (4) | 0.72224 (17) | 0.0609 (9) | |
C1 | 0.1511 (5) | 0.4108 (5) | 0.4142 (2) | 0.0651 (11) | |
C2 | 0.2279 (5) | 0.6648 (6) | 0.51586 (18) | 0.0566 (10) | |
C3 | 0.2487 (5) | 0.3691 (5) | 0.47972 (18) | 0.0534 (9) | |
C4 | 0.2840 (4) | 0.4955 (5) | 0.53013 (17) | 0.0492 (9) | |
C5 | 0.3749 (4) | 0.4568 (5) | 0.59366 (18) | 0.0524 (9) | |
C6 | 0.4322 (5) | 0.2954 (5) | 0.6072 (2) | 0.0623 (10) | |
H6A | 0.4952 | 0.2702 | 0.6495 | 0.075* | |
C7 | 0.3950 (5) | 0.1729 (5) | 0.5576 (2) | 0.0657 (11) | |
H7A | 0.4328 | 0.0644 | 0.5667 | 0.079* | |
C8 | 0.3024 (5) | 0.2082 (5) | 0.49420 (19) | 0.0620 (10) | |
H8A | 0.2765 | 0.1234 | 0.4615 | 0.074* | |
C9 | 0.4213 (4) | 0.5689 (5) | 0.71071 (17) | 0.0523 (9) | |
C10 | 0.5397 (4) | 0.6628 (4) | 0.75215 (18) | 0.0480 (9) | |
C11 | 0.5535 (5) | 0.6431 (5) | 0.82497 (18) | 0.0584 (10) | |
H11A | 0.6334 | 0.7036 | 0.8530 | 0.070* | |
C12 | 0.4516 (5) | 0.5362 (5) | 0.85555 (19) | 0.0603 (10) | |
H12A | 0.4628 | 0.5220 | 0.9042 | 0.072* | |
C14 | 0.3162 (5) | 0.4646 (5) | 0.7422 (2) | 0.0626 (11) | |
H14A | 0.2348 | 0.4043 | 0.7148 | 0.075* | |
C13 | 0.3319 (5) | 0.4496 (5) | 0.8141 (2) | 0.0643 (11) | |
H13A | 0.2599 | 0.3792 | 0.8352 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.090 (2) | 0.0637 (18) | 0.0462 (14) | −0.0149 (15) | −0.0149 (13) | −0.0003 (13) |
O2 | 0.090 (2) | 0.082 (2) | 0.0670 (18) | −0.0169 (17) | −0.0075 (16) | 0.0199 (16) |
O3 | 0.0672 (19) | 0.119 (3) | 0.088 (2) | −0.0375 (19) | −0.0167 (17) | 0.0071 (19) |
N1 | 0.128 (4) | 0.087 (3) | 0.065 (2) | 0.014 (3) | −0.036 (2) | −0.007 (2) |
N2 | 0.113 (3) | 0.067 (3) | 0.063 (2) | 0.008 (2) | −0.005 (2) | 0.0033 (19) |
N3 | 0.064 (2) | 0.062 (2) | 0.0549 (19) | −0.0103 (18) | −0.0035 (17) | −0.0013 (17) |
C1 | 0.082 (3) | 0.056 (2) | 0.054 (2) | −0.005 (2) | −0.009 (2) | −0.0072 (19) |
C2 | 0.065 (3) | 0.062 (3) | 0.0408 (19) | −0.002 (2) | −0.0030 (18) | −0.0008 (19) |
C3 | 0.060 (2) | 0.056 (2) | 0.0429 (19) | −0.005 (2) | −0.0001 (17) | 0.0012 (18) |
C4 | 0.049 (2) | 0.053 (2) | 0.0451 (19) | −0.0043 (18) | 0.0015 (15) | −0.0005 (17) |
C5 | 0.056 (2) | 0.056 (2) | 0.0438 (19) | −0.006 (2) | 0.0004 (17) | −0.0018 (18) |
C6 | 0.064 (2) | 0.068 (3) | 0.053 (2) | 0.001 (2) | −0.0055 (19) | 0.006 (2) |
C7 | 0.080 (3) | 0.057 (2) | 0.059 (2) | 0.007 (2) | 0.002 (2) | 0.006 (2) |
C8 | 0.076 (3) | 0.057 (3) | 0.053 (2) | 0.000 (2) | 0.004 (2) | −0.0059 (19) |
C9 | 0.056 (2) | 0.053 (2) | 0.045 (2) | 0.0009 (19) | −0.0076 (17) | 0.0009 (17) |
C10 | 0.049 (2) | 0.043 (2) | 0.050 (2) | 0.0003 (17) | −0.0030 (16) | −0.0021 (16) |
C11 | 0.062 (2) | 0.059 (2) | 0.051 (2) | −0.002 (2) | −0.0103 (19) | −0.0059 (18) |
C12 | 0.065 (3) | 0.068 (3) | 0.047 (2) | −0.001 (2) | 0.0039 (19) | −0.0027 (19) |
C14 | 0.059 (2) | 0.065 (3) | 0.061 (2) | −0.016 (2) | −0.007 (2) | 0.001 (2) |
C13 | 0.066 (3) | 0.065 (3) | 0.062 (2) | −0.011 (2) | 0.010 (2) | 0.002 (2) |
O1—C5 | 1.377 (4) | C6—H6A | 0.9300 |
O1—C9 | 1.398 (4) | C7—C8 | 1.383 (5) |
O2—N3 | 1.214 (4) | C7—H7A | 0.9300 |
O3—N3 | 1.213 (4) | C8—H8A | 0.9300 |
N1—C1 | 1.129 (5) | C9—C14 | 1.372 (5) |
N2—C2 | 1.136 (5) | C9—C10 | 1.395 (5) |
N3—C10 | 1.452 (5) | C10—C11 | 1.390 (5) |
C1—C3 | 1.445 (5) | C11—C12 | 1.359 (5) |
C2—C4 | 1.443 (6) | C11—H11A | 0.9300 |
C3—C8 | 1.376 (5) | C12—C13 | 1.372 (5) |
C3—C4 | 1.403 (5) | C12—H12A | 0.9300 |
C4—C5 | 1.385 (5) | C14—C13 | 1.369 (5) |
C5—C6 | 1.385 (5) | C14—H14A | 0.9300 |
C6—C7 | 1.372 (5) | C13—H13A | 0.9300 |
C5—O1—C9 | 119.6 (3) | C3—C8—C7 | 119.8 (3) |
O3—N3—O2 | 123.6 (4) | C3—C8—H8A | 120.1 |
O3—N3—C10 | 117.4 (3) | C7—C8—H8A | 120.1 |
O2—N3—C10 | 119.0 (3) | C14—C9—C10 | 119.9 (3) |
N1—C1—C3 | 178.2 (5) | C14—C9—O1 | 122.7 (3) |
N2—C2—C4 | 179.1 (4) | C10—C9—O1 | 117.4 (3) |
C8—C3—C4 | 119.8 (3) | C11—C10—C9 | 119.0 (4) |
C8—C3—C1 | 121.4 (3) | C11—C10—N3 | 118.5 (3) |
C4—C3—C1 | 118.7 (3) | C9—C10—N3 | 122.5 (3) |
C5—C4—C3 | 119.3 (3) | C12—C11—C10 | 120.6 (3) |
C5—C4—C2 | 120.1 (3) | C12—C11—H11A | 119.7 |
C3—C4—C2 | 120.5 (3) | C10—C11—H11A | 119.7 |
O1—C5—C4 | 114.8 (3) | C11—C12—C13 | 119.5 (4) |
O1—C5—C6 | 124.5 (3) | C11—C12—H12A | 120.3 |
C4—C5—C6 | 120.5 (3) | C13—C12—H12A | 120.3 |
C7—C6—C5 | 119.4 (3) | C13—C14—C9 | 119.6 (4) |
C7—C6—H6A | 120.3 | C13—C14—H14A | 120.2 |
C5—C6—H6A | 120.3 | C9—C14—H14A | 120.2 |
C6—C7—C8 | 121.1 (4) | C14—C13—C12 | 121.3 (4) |
C6—C7—H7A | 119.4 | C14—C13—H13A | 119.3 |
C8—C7—H7A | 119.4 | C12—C13—H13A | 119.3 |
Experimental details
Crystal data | |
Chemical formula | C14H7N3O3 |
Mr | 265.23 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 8.0814 (17), 7.9899 (12), 19.068 (3) |
β (°) | 95.944 (15) |
V (Å3) | 1224.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.4 × 0.4 × 0.1 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3018, 2155, 1252 |
Rint | 0.092 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.146, 1.03 |
No. of reflections | 2155 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.27 |
Computer programs: XSCANS (Bruker, 1997), SHELXTL (Bruker, 1997).
Acknowledgements
The authors thank the HBUST for financial support.
References
Atalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111–o1112. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atalay, Ş., Çoruh, U., Akdemir, N. & Ağar, E. (2004). Acta Cryst. E60, o303–o305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cave, R. J., Siders, P. & Marcus, R. A. (1986). J. Phys. Chem. 90, 1436–1439. CrossRef CAS Web of Science Google Scholar
Köysal, Y., Işık, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o930–o931. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications , Vols. 1-4. Weinheim/New York: VHC Publishers Inc. Google Scholar
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press. Google Scholar
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000–o1001. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ocak Ískeleli, N. (2007). Acta Cryst. E63, o997–o998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sharman, W. M. & van Lier, J. E. (2003). The Porphyrin Handbook, Vol. 15, edited by K. M. Kadish, K. M. Smith & G. Guilard, pp. 1–60. New York: Academic Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phthalonitriles are among the most important precursors of phthalocyanine materials (Leznoff, 1989–1996). Monophneoxyphthalonitriles have been used for preparing symmetrical phthalocyanines which have been applied in many areas, such as laser printing, photocopying, optical data storage, and catalysis (McKeown, 1998).
In the title compound, (I), (Fig. 1) the triple bond lengths between C and N, 1.136 (5) Å and 1.129 (5) Å, agree with literature values (Ocak et al., 2003). The geometry around the O atoms is in good agreement with the literature (Atalay et al., 2003, 2004; Köysal et al., 2004). The dihedral angle between the two intramolecular arene moieties is 62.57 (12)°.