organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Nitro­phen­­oxy)phthalo­nitrile

aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, People's Republic of China, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: zhangxianfu@tsinghua.org.cn

(Received 1 December 2007; accepted 19 December 2007; online 4 January 2008)

In the title compound, C14H7N3O3, the dihedral angle between the two arene units is 62.57 (12)°.

Related literature

For related literature, see: Atalay et al. (2003[Atalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111-o1112.], 2004[Atalay, Ş., Çoruh, U., Akdemir, N. & Ağar, E. (2004). Acta Cryst. E60, o303-o305.]); Cave et al. (1986[Cave, R. J., Siders, P. & Marcus, R. A. (1986). J. Phys. Chem. 90, 1436-1439.]); Köysal et al. (2004[Köysal, Y., Işık, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o930-o931.]); Leznoff & Lever (1989–1996[Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications , Vols. 1-4. Weinheim/New York: VHC Publishers Inc.]); McKeown (1998[McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.]); Ocak Ískeleli (2007[Ocak Ískeleli, N. (2007). Acta Cryst. E63, o997-o998.]); Ocak et al. (2003[Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.]), Sharman & van Lier(2003[Sharman, W. M. & van Lier, J. E. (2003). The Porphyrin Handbook, Vol. 15, edited by K. M. Kadish, K. M. Smith & G. Guilard, pp. 1-60. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7N3O3

  • Mr = 265.23

  • Monoclinic, P 21 /n

  • a = 8.0814 (17) Å

  • b = 7.9899 (12) Å

  • c = 19.068 (3) Å

  • β = 95.944 (15)°

  • V = 1224.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.4 × 0.4 × 0.1 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 3018 measured reflections

  • 2155 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.092

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.145

  • S = 1.03

  • 2155 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalonitriles are among the most important precursors of phthalocyanine materials (Leznoff, 1989–1996). Monophneoxyphthalonitriles have been used for preparing symmetrical phthalocyanines which have been applied in many areas, such as laser printing, photocopying, optical data storage, and catalysis (McKeown, 1998).

In the title compound, (I), (Fig. 1) the triple bond lengths between C and N, 1.136 (5) Å and 1.129 (5) Å, agree with literature values (Ocak et al., 2003). The geometry around the O atoms is in good agreement with the literature (Atalay et al., 2003, 2004; Köysal et al., 2004). The dihedral angle between the two intramolecular arene moieties is 62.57 (12)°.

Related literature top

For related literature, see: Atalay et al. (2003, 2004); Cave et al. (1986); Köysal et al. (2004); Leznoff & Lever (1989–1996); McKeown (1998); Ocak Ískeleli (2007); Ocak et al. (2003), Sharman et al. (2003).

Experimental top

o-nitrophenol (1.39 g, 10.0 mmol) and 3-nitrophthalonitrile (1.73. g, 10.0 mmol) were dissolved in dry DMF (15 ml) with stirring under N2. Dry fine-powdered potassium carbonate (2.5 g, 18.1 mmol) was added over the course 1 h in equal portions every 10 min. The reaction mixture was stirred for 48 h at room temperature and poured into iced water (150 g). The product was filtered off and washed with(10% w/w) NaOH solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield 1.72 g, 65%). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 397–400 K). IR data (ν _max/cm-1): 3050(Ar—H), 1591(NO2), 2230(CN). NMR δ(H) 7.34–7.39(1H, m), 7.53–7.63(2H,m), 7.81–7.93(3H,m), 8.19–8.26(1H,m).

Refinement top

H atoms were included as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of C14H7N3O3 with 35% probability ellipsoids, showing the atom numbering scheme.
3-(2-Nitrophenoxy)phthalonitrile top
Crystal data top
C14H7N3O3F(000) = 544
Mr = 265.23Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 51 reflections
a = 8.0814 (17) Åθ = 5.0–12.5°
b = 7.9899 (12) ŵ = 0.11 mm1
c = 19.068 (3) ÅT = 295 K
β = 95.944 (15)°Plate, colorless
V = 1224.6 (4) Å30.4 × 0.4 × 0.1 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.092
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 19
ω scansk = 91
3018 measured reflectionsl = 2222
2155 independent reflections3 standard reflections every 97 reflections
1252 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.001P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
2155 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H7N3O3V = 1224.6 (4) Å3
Mr = 265.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0814 (17) ŵ = 0.11 mm1
b = 7.9899 (12) ÅT = 295 K
c = 19.068 (3) Å0.4 × 0.4 × 0.1 mm
β = 95.944 (15)°
Data collection top
Bruker P4
diffractometer
Rint = 0.092
3018 measured reflections3 standard reflections every 97 reflections
2155 independent reflections intensity decay: none
1252 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2155 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4115 (3)0.5913 (3)0.63769 (12)0.0683 (8)
O20.5975 (4)0.8586 (4)0.66974 (15)0.0806 (9)
O30.7869 (4)0.8009 (4)0.75304 (16)0.0932 (11)
N10.0726 (6)0.4464 (5)0.36401 (19)0.0967 (14)
N20.1821 (5)0.7972 (5)0.50408 (18)0.0822 (11)
N30.6493 (4)0.7811 (4)0.72224 (17)0.0609 (9)
C10.1511 (5)0.4108 (5)0.4142 (2)0.0651 (11)
C20.2279 (5)0.6648 (6)0.51586 (18)0.0566 (10)
C30.2487 (5)0.3691 (5)0.47972 (18)0.0534 (9)
C40.2840 (4)0.4955 (5)0.53013 (17)0.0492 (9)
C50.3749 (4)0.4568 (5)0.59366 (18)0.0524 (9)
C60.4322 (5)0.2954 (5)0.6072 (2)0.0623 (10)
H6A0.49520.27020.64950.075*
C70.3950 (5)0.1729 (5)0.5576 (2)0.0657 (11)
H7A0.43280.06440.56670.079*
C80.3024 (5)0.2082 (5)0.49420 (19)0.0620 (10)
H8A0.27650.12340.46150.074*
C90.4213 (4)0.5689 (5)0.71071 (17)0.0523 (9)
C100.5397 (4)0.6628 (4)0.75215 (18)0.0480 (9)
C110.5535 (5)0.6431 (5)0.82497 (18)0.0584 (10)
H11A0.63340.70360.85300.070*
C120.4516 (5)0.5362 (5)0.85555 (19)0.0603 (10)
H12A0.46280.52200.90420.072*
C140.3162 (5)0.4646 (5)0.7422 (2)0.0626 (11)
H14A0.23480.40430.71480.075*
C130.3319 (5)0.4496 (5)0.8141 (2)0.0643 (11)
H13A0.25990.37920.83520.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.090 (2)0.0637 (18)0.0462 (14)0.0149 (15)0.0149 (13)0.0003 (13)
O20.090 (2)0.082 (2)0.0670 (18)0.0169 (17)0.0075 (16)0.0199 (16)
O30.0672 (19)0.119 (3)0.088 (2)0.0375 (19)0.0167 (17)0.0071 (19)
N10.128 (4)0.087 (3)0.065 (2)0.014 (3)0.036 (2)0.007 (2)
N20.113 (3)0.067 (3)0.063 (2)0.008 (2)0.005 (2)0.0033 (19)
N30.064 (2)0.062 (2)0.0549 (19)0.0103 (18)0.0035 (17)0.0013 (17)
C10.082 (3)0.056 (2)0.054 (2)0.005 (2)0.009 (2)0.0072 (19)
C20.065 (3)0.062 (3)0.0408 (19)0.002 (2)0.0030 (18)0.0008 (19)
C30.060 (2)0.056 (2)0.0429 (19)0.005 (2)0.0001 (17)0.0012 (18)
C40.049 (2)0.053 (2)0.0451 (19)0.0043 (18)0.0015 (15)0.0005 (17)
C50.056 (2)0.056 (2)0.0438 (19)0.006 (2)0.0004 (17)0.0018 (18)
C60.064 (2)0.068 (3)0.053 (2)0.001 (2)0.0055 (19)0.006 (2)
C70.080 (3)0.057 (2)0.059 (2)0.007 (2)0.002 (2)0.006 (2)
C80.076 (3)0.057 (3)0.053 (2)0.000 (2)0.004 (2)0.0059 (19)
C90.056 (2)0.053 (2)0.045 (2)0.0009 (19)0.0076 (17)0.0009 (17)
C100.049 (2)0.043 (2)0.050 (2)0.0003 (17)0.0030 (16)0.0021 (16)
C110.062 (2)0.059 (2)0.051 (2)0.002 (2)0.0103 (19)0.0059 (18)
C120.065 (3)0.068 (3)0.047 (2)0.001 (2)0.0039 (19)0.0027 (19)
C140.059 (2)0.065 (3)0.061 (2)0.016 (2)0.007 (2)0.001 (2)
C130.066 (3)0.065 (3)0.062 (2)0.011 (2)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C51.377 (4)C6—H6A0.9300
O1—C91.398 (4)C7—C81.383 (5)
O2—N31.214 (4)C7—H7A0.9300
O3—N31.213 (4)C8—H8A0.9300
N1—C11.129 (5)C9—C141.372 (5)
N2—C21.136 (5)C9—C101.395 (5)
N3—C101.452 (5)C10—C111.390 (5)
C1—C31.445 (5)C11—C121.359 (5)
C2—C41.443 (6)C11—H11A0.9300
C3—C81.376 (5)C12—C131.372 (5)
C3—C41.403 (5)C12—H12A0.9300
C4—C51.385 (5)C14—C131.369 (5)
C5—C61.385 (5)C14—H14A0.9300
C6—C71.372 (5)C13—H13A0.9300
C5—O1—C9119.6 (3)C3—C8—C7119.8 (3)
O3—N3—O2123.6 (4)C3—C8—H8A120.1
O3—N3—C10117.4 (3)C7—C8—H8A120.1
O2—N3—C10119.0 (3)C14—C9—C10119.9 (3)
N1—C1—C3178.2 (5)C14—C9—O1122.7 (3)
N2—C2—C4179.1 (4)C10—C9—O1117.4 (3)
C8—C3—C4119.8 (3)C11—C10—C9119.0 (4)
C8—C3—C1121.4 (3)C11—C10—N3118.5 (3)
C4—C3—C1118.7 (3)C9—C10—N3122.5 (3)
C5—C4—C3119.3 (3)C12—C11—C10120.6 (3)
C5—C4—C2120.1 (3)C12—C11—H11A119.7
C3—C4—C2120.5 (3)C10—C11—H11A119.7
O1—C5—C4114.8 (3)C11—C12—C13119.5 (4)
O1—C5—C6124.5 (3)C11—C12—H12A120.3
C4—C5—C6120.5 (3)C13—C12—H12A120.3
C7—C6—C5119.4 (3)C13—C14—C9119.6 (4)
C7—C6—H6A120.3C13—C14—H14A120.2
C5—C6—H6A120.3C9—C14—H14A120.2
C6—C7—C8121.1 (4)C14—C13—C12121.3 (4)
C6—C7—H7A119.4C14—C13—H13A119.3
C8—C7—H7A119.4C12—C13—H13A119.3

Experimental details

Crystal data
Chemical formulaC14H7N3O3
Mr265.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.0814 (17), 7.9899 (12), 19.068 (3)
β (°) 95.944 (15)
V3)1224.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.4 × 0.1
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3018, 2155, 1252
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.146, 1.03
No. of reflections2155
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Bruker, 1997).

 

Acknowledgements

The authors thank the HBUST for financial support.

References

First citationAtalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111–o1112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtalay, Ş., Çoruh, U., Akdemir, N. & Ağar, E. (2004). Acta Cryst. E60, o303–o305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCave, R. J., Siders, P. & Marcus, R. A. (1986). J. Phys. Chem. 90, 1436–1439.  CrossRef CAS Web of Science Google Scholar
First citationKöysal, Y., Işık, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o930–o931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications , Vols. 1-4. Weinheim/New York: VHC Publishers Inc.  Google Scholar
First citationMcKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.  Google Scholar
First citationOcak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000–o1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOcak Ískeleli, N. (2007). Acta Cryst. E63, o997–o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharman, W. M. & van Lier, J. E. (2003). The Porphyrin Handbook, Vol. 15, edited by K. M. Kadish, K. M. Smith & G. Guilard, pp. 1–60. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds