organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{3-Cyano-5,5-di­methyl-4-[4-(piperidin-1-yl)buta-1,3-dien­yl]-2,5-di­hydro­furan-2-yl­­idene}malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and bUtrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 21 December 2007; accepted 7 January 2008; online 23 January 2008)

The title compound, C19H20N4O, crystallizes as twinned crystals containing two independent mol­ecules which pack into a three-dimensional matrix via several C—H⋯N(cyano) inter­actions, with a C⋯N range of 3.324 (8)–3.568 (8) Å and C—H⋯N angles in the range 147–166°.

Related literature

For general background, see: Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]); Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64. Submitted.]). For related structures, see: Bock et al. (1996[Bock, H., Nick, S., Seitz, W., Nather, C. & Bats, J. W. (1996). Z. Naturforsch. Teil B Chem. Sci. 51, 153-171.]); Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]); Reck & Dahne (2006[Reck, G. & Dahne, L. (2006). Private communication (refcode NEQHAT01). CCDC, Union Road, Cambridge, England.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N4O

  • Mr = 320.39

  • Monoclinic, P 21 /c

  • a = 15.094 (4) Å

  • b = 18.994 (5) Å

  • c = 13.332 (4) Å

  • β = 116.193 (8)°

  • V = 3429.7 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 119 (2) K

  • 0.35 × 0.25 × 0.09 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.733, Tmax = 1.0 (expected range = 0.728–0.993)

  • 18712 measured reflections

  • 11128 independent reflections

  • 5766 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.203

  • S = 1.02

  • 11128 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13′—H13′⋯N2i 0.95 2.49 3.324 (8) 147
C14—H14⋯N1′ 0.95 2.58 3.498 (8) 161
C14′—H14′⋯N1ii 0.95 2.61 3.484 (8) 153
C16′—H16D⋯N2ii 0.99 2.55 3.477 (8) 156
C19—H19A⋯N2′iii 0.99 2.60 3.568 (8) 166
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

We have previously reported on the synthesis of a number of high figure of merit chromophores for nonlinear optics (Kay et al., 2004), and the X-ray crystallographic and structural properties of crucial dye precursors used (Gainsford et al., 2007, 2008). As part of our ongoing studies of the structure of these highly polar materials, we report here the crystallographic data of another of the chromophore precursors.

The asymmetric unit contents of the title compound (I) is shown in Figures 1 (unprimed & primed independent molecules hereafter A & B) with hydrogen bond data in Table 1. The structures are almost superimposable with a weighted r.m.s. fit between A & inverted B molecules of 0.61Å (Spek, 2003). The only notable difference in bond lengths concerns those involving atoms C11 & C11'. Minor differences in orientations may be attributed to the packing interactions (Table 1). For example the polyene chains C4, C11—C14 are tilted at 7.1 (5)° & 3.4 (6)° to the "CDFP" 5-membered ring planes (O1, C4—C8) in molecules A & B respectively. Similarly the dicyanomethylene groups (N1,N2, C1—C3) are at 3.5 (4) and 7.7 (4)° to the CDFP ring in A & B, respectively. The piperidin-1-yl rings adopt a chair conformation.

The polyene-C—H···N interactions with adjacent cyano N atoms (C13', C14, C14') are commonly observed for these molecules (Gainsford et al., 2008) as is the methylene-C19—H19A interaction with N2' (entry 5, Table 1). Only once before has it been reported when the adjacent polyene C hydrogen atoms (on C13' & C14') are both H bonded to cyano N atoms (NEQHAT01, Reck & Dahne, 2006) from the Cambridge Structural Database (Version 5.29 with November 2007 updates; Allen, 2002). There are few meta-C(C16')—H···N(cyano) interactions reported: two examples exist in the somewhat related compounds YAMXEP (Marder et al., 1993) and ZOSZAI (Bock et al., 1996) with H···N, C—H···N 2.69 & 2.64 Å, 148° & 147°, respectively.

Related literature top

For general background, see: Kay et al. (2004); Gainsford et al. (2007, 2008). For related structures, see: Bock et al. (1996); Marder et al. (1993); Reck & Dahne (2006); Allen (2002).

Experimental top

To a solution of 5.8 mmole of {4-(4-Acetanilido-trans-1,3-butadienyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene} propanedinitrile (compound 11b, Kay et al., 2004) in 30 ml of ethanol was added an equimolar quantity of piperidine. The solution was refluxed 1 h, cooled and the product collected by filtration and washed with ethanol. Final crystallization was from ethanol.

Refinement top

The measured crystal was a pseudo-merohedral twin. The twin operation was a 2-fold rotation about (1 0 - 2), with twin matrix (-1 0 - 1/0 - 1 0/-0.001 0 1) as indicated by the PLATON/TwinRotMat (Spek, 2003) utility that also produced an HKLF5 file for twin refinement with SHELXL97. The twin fraction refined to 0.5124 (16). Data was restricted to 2θ 50° (see _refine_special_details for other statistics of the dataset used).

All H atoms bound to carbon were constrained to their expected geometries (C—H 0.98, 0.99 Å). All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All non-hydrogen atoms were refined with anisotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the asymmetic unit; displacement ellipsoids are shown at the 30% probability level. All H atoms except H14 omitted for clarity; dotted line represents a hydrogen bond interaction (Table 1).
2-{3-Cyano-5,5-dimethyl-4-[4-(piperidin-1-yl)buta-1,3-dienyl]- 2,5-dihydrofuran-2-ylidene}malononitrile top
Crystal data top
C19H20N4OF(000) = 1360
Mr = 320.39Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4176 reflections
a = 15.094 (4) Åθ = 2.7–30.2°
b = 18.994 (5) ŵ = 0.08 mm1
c = 13.332 (4) ÅT = 119 K
β = 116.193 (8)°Plate, red
V = 3429.7 (16) Å30.35 × 0.25 × 0.09 mm
Z = 8
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
11128 independent reflections
Radiation source: fine-focus sealed tube5766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.0°
/f and /w scansh = 1617
Absorption correction: multi-scan
(Blessing, 1995)
k = 2222
Tmin = 0.733, Tmax = 1.0l = 1515
18712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.041P)2 + 5.943P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
11128 reflectionsΔρmax = 0.46 e Å3
424 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
C19H20N4OV = 3429.7 (16) Å3
Mr = 320.39Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.094 (4) ŵ = 0.08 mm1
b = 18.994 (5) ÅT = 119 K
c = 13.332 (4) Å0.35 × 0.25 × 0.09 mm
β = 116.193 (8)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
11128 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5766 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 1.0Rint = 0.088
18712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
11128 reflectionsΔρmin = 0.36 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. An extinction parameter was refined. Data above 2θ 50° were excluded on the basis of low intensity/error ratio. A total of 477 reflections were either not recorded or affected by the backstop within this θ limit (of 6035 expected). A further 13 reflections (and their Friedel opposites) were omitted from the refinement on the basis of being clearly outliers (with Fo<<Fc).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7393 (3)0.8303 (2)0.4515 (3)0.0343 (10)
N10.9567 (4)0.7590 (3)0.2970 (5)0.0422 (15)
N20.8344 (4)0.9570 (3)0.3440 (4)0.0489 (15)
N30.8724 (4)0.6091 (3)0.4162 (5)0.0473 (15)
N40.5250 (3)0.5399 (2)0.7252 (4)0.0326 (12)
C10.9063 (4)0.7849 (3)0.3282 (5)0.0356 (16)
C20.8470 (4)0.8229 (3)0.3707 (5)0.0321 (14)
C30.8397 (4)0.8966 (4)0.3552 (5)0.0362 (15)
C40.7276 (4)0.7135 (3)0.5029 (5)0.0289 (15)
C50.6857 (4)0.7869 (3)0.4989 (5)0.0311 (15)
C60.7962 (4)0.7888 (3)0.4209 (5)0.0305 (14)
C70.7908 (4)0.7191 (3)0.4492 (5)0.0283 (14)*
C80.5770 (4)0.7903 (3)0.4147 (5)0.0395 (16)
H8A0.55450.83940.40550.059*
H8B0.53780.76210.44200.059*
H8C0.56900.77180.34260.059*
C90.7073 (4)0.8205 (3)0.6121 (5)0.0400 (17)
H9A0.69050.87070.60150.060*
H9B0.77760.81510.66300.060*
H9C0.66770.79710.64400.060*
C100.8375 (4)0.6601 (3)0.4304 (5)0.0336 (15)
C110.7080 (4)0.6540 (3)0.5476 (5)0.0344 (16)
H110.74360.61260.54860.041*
C120.6398 (4)0.6493 (3)0.5920 (4)0.0297 (14)
H120.60460.69060.59250.036*
C130.6206 (4)0.5883 (3)0.6352 (5)0.0323 (15)
H130.65570.54620.63870.039*
C140.5483 (4)0.5901 (3)0.6736 (5)0.0362 (16)
H140.51170.63270.66100.043*
C150.4434 (4)0.5482 (3)0.7556 (5)0.0389 (16)
H15A0.41200.59480.73050.047*
H15B0.46900.54580.83790.047*
C160.3684 (4)0.4911 (3)0.7020 (5)0.0438 (17)*
H16A0.33930.49590.61970.053*
H16B0.31470.49580.72500.053*
C170.4162 (4)0.4197 (3)0.7361 (5)0.0448 (17)
H17A0.36670.38240.69820.054*
H17B0.44120.41350.81780.054*
C180.5018 (4)0.4130 (3)0.7040 (6)0.0430 (17)*
H18A0.53550.36730.73070.052*
H18B0.47560.41430.62160.052*
C190.5750 (4)0.4721 (3)0.7545 (5)0.0391 (16)
H19A0.60840.46690.83680.047*
H19B0.62590.46970.72670.047*
O1'0.2394 (3)0.8340 (2)0.2535 (3)0.0340 (10)
N1'0.4636 (4)0.7639 (3)0.6209 (5)0.0443 (15)
N2'0.3455 (4)0.9652 (3)0.4508 (4)0.0480 (15)
N3'0.3582 (4)0.6149 (3)0.4407 (4)0.0443 (15)
N4'0.0597 (3)0.5220 (2)0.2095 (4)0.0313 (12)
C1'0.4113 (4)0.7928 (3)0.5417 (5)0.0347 (15)
C2'0.3478 (4)0.8300 (3)0.4436 (5)0.0288 (14)
C3'0.3455 (4)0.9041 (4)0.4475 (5)0.0334 (15)
C4'0.2259 (4)0.7152 (3)0.1981 (5)0.0269 (14)
C5'0.1910 (4)0.7881 (3)0.1521 (5)0.0320 (15)
C6'0.2942 (4)0.7932 (3)0.3443 (5)0.0311 (15)
C7'0.2857 (4)0.7224 (3)0.3153 (5)0.0295 (15)
C8'0.0811 (4)0.7979 (3)0.1116 (5)0.0465 (18)
H8'A0.06530.84820.10260.070*
H8'B0.06130.77780.16630.070*
H8'C0.04560.77400.03960.070*
C9'0.2278 (4)0.8151 (3)0.0713 (5)0.0422 (17)
H9'A0.21700.86600.06220.063*
H9'B0.19180.79180.00110.063*
H9'C0.29840.80500.10020.063*
C10'0.3282 (4)0.6651 (3)0.3876 (5)0.0315 (15)
C11'0.2043 (4)0.6539 (3)0.1390 (5)0.0303 (14)
H11'0.22990.61190.18040.036*
C12'0.1479 (4)0.6464 (3)0.0229 (5)0.0296 (14)
H12'0.11880.68720.02030.035*
C13'0.1330 (4)0.5823 (3)0.0312 (5)0.0318 (15)
H13'0.16080.54070.01030.038*
C14'0.0770 (4)0.5789 (3)0.1468 (5)0.0330 (15)
H14'0.04860.62170.18410.040*
C15'0.0091 (4)0.5216 (3)0.3290 (5)0.0425 (18)
H15C0.02590.50500.37230.051*
H15D0.03240.57020.35340.051*
C16'0.0964 (4)0.4748 (3)0.3530 (5)0.0440 (17)
H16C0.13870.47280.43460.053*
H16D0.13620.49440.31720.053*
C17'0.0618 (4)0.4010 (3)0.3085 (5)0.0444 (18)
H17C0.03000.37890.35160.053*
H17D0.11940.37180.31830.053*
C18'0.0114 (4)0.4035 (3)0.1846 (5)0.0419 (18)
H18C0.02240.42090.14060.050*
H18D0.03620.35540.15830.050*
C19'0.0967 (4)0.4509 (3)0.1666 (5)0.0374 (15)
H19C0.14220.45350.08580.045*
H19D0.13370.43170.20600.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.041 (3)0.032 (2)0.036 (3)0.000 (2)0.023 (2)0.003 (2)
N10.037 (3)0.047 (4)0.047 (4)0.001 (3)0.023 (3)0.002 (3)
N20.066 (4)0.047 (4)0.037 (4)0.002 (3)0.026 (3)0.004 (3)
N30.051 (4)0.047 (4)0.053 (4)0.002 (3)0.031 (3)0.005 (3)
N40.028 (3)0.036 (3)0.034 (3)0.000 (3)0.014 (2)0.002 (3)
C10.024 (4)0.039 (4)0.035 (4)0.001 (3)0.005 (3)0.002 (3)
C20.033 (3)0.034 (4)0.032 (4)0.004 (3)0.016 (3)0.002 (3)
C30.036 (4)0.044 (4)0.028 (4)0.006 (4)0.014 (3)0.004 (3)
C40.024 (3)0.030 (4)0.030 (4)0.008 (3)0.010 (3)0.004 (3)
C50.037 (4)0.029 (4)0.035 (4)0.007 (3)0.023 (3)0.002 (3)
C60.025 (3)0.043 (4)0.024 (3)0.001 (3)0.012 (3)0.001 (3)
C80.033 (4)0.047 (4)0.040 (4)0.005 (3)0.017 (3)0.005 (3)
C90.053 (4)0.044 (4)0.027 (4)0.004 (3)0.021 (3)0.010 (3)
C100.030 (4)0.042 (4)0.027 (3)0.003 (3)0.011 (3)0.008 (3)
C110.028 (3)0.041 (4)0.034 (4)0.006 (3)0.014 (3)0.000 (3)
C120.023 (3)0.035 (4)0.027 (3)0.004 (3)0.007 (3)0.000 (3)
C130.030 (4)0.031 (4)0.035 (4)0.003 (3)0.013 (3)0.001 (3)
C140.029 (4)0.039 (4)0.036 (4)0.006 (3)0.010 (3)0.002 (3)
C150.036 (4)0.043 (4)0.045 (4)0.007 (3)0.024 (3)0.001 (3)
C170.043 (4)0.046 (4)0.047 (4)0.013 (4)0.020 (3)0.005 (4)
C190.034 (4)0.047 (4)0.039 (4)0.008 (3)0.018 (3)0.010 (3)
O1'0.038 (3)0.037 (3)0.022 (2)0.001 (2)0.0086 (19)0.005 (2)
N1'0.045 (4)0.045 (4)0.034 (4)0.003 (3)0.010 (3)0.007 (3)
N2'0.060 (4)0.049 (4)0.037 (4)0.004 (3)0.023 (3)0.004 (3)
N3'0.042 (3)0.051 (4)0.035 (3)0.006 (3)0.012 (3)0.003 (3)
N4'0.035 (3)0.024 (3)0.028 (3)0.001 (2)0.008 (2)0.003 (2)
C1'0.027 (4)0.043 (4)0.029 (4)0.004 (3)0.007 (3)0.008 (3)
C2'0.022 (3)0.034 (4)0.028 (3)0.001 (3)0.009 (3)0.001 (3)
C3'0.035 (4)0.047 (4)0.020 (3)0.004 (4)0.014 (3)0.006 (3)
C4'0.020 (3)0.033 (4)0.027 (3)0.001 (3)0.009 (2)0.005 (3)
C5'0.031 (4)0.043 (4)0.015 (3)0.005 (3)0.004 (2)0.006 (3)
C6'0.020 (3)0.046 (4)0.024 (3)0.001 (3)0.008 (3)0.003 (3)
C7'0.021 (3)0.035 (4)0.028 (4)0.002 (3)0.007 (3)0.000 (3)
C8'0.046 (4)0.055 (4)0.034 (4)0.009 (4)0.013 (3)0.001 (3)
C9'0.059 (4)0.039 (4)0.030 (4)0.002 (3)0.020 (3)0.006 (3)
C10'0.026 (4)0.037 (4)0.030 (4)0.001 (3)0.010 (3)0.006 (3)
C11'0.024 (3)0.036 (4)0.026 (3)0.004 (3)0.007 (3)0.000 (3)
C12'0.031 (3)0.028 (3)0.031 (4)0.003 (3)0.015 (3)0.000 (3)
C13'0.026 (3)0.038 (4)0.028 (4)0.001 (3)0.009 (3)0.002 (3)
C14'0.034 (4)0.028 (4)0.036 (4)0.002 (3)0.015 (3)0.006 (3)
C15'0.051 (4)0.045 (4)0.021 (3)0.008 (4)0.007 (3)0.000 (3)
C16'0.036 (4)0.054 (5)0.035 (4)0.000 (4)0.009 (3)0.004 (3)
C17'0.034 (4)0.052 (5)0.043 (4)0.007 (4)0.014 (3)0.010 (3)
C18'0.050 (4)0.041 (4)0.034 (4)0.005 (3)0.017 (3)0.005 (3)
C19'0.037 (4)0.033 (4)0.037 (4)0.010 (3)0.012 (3)0.000 (3)
Geometric parameters (Å, º) top
O1—C61.355 (6)O1'—C6'1.365 (6)
O1—C51.478 (6)O1'—C5'1.500 (6)
N1—C11.128 (7)N1'—C1'1.141 (7)
N2—C31.156 (7)N2'—C3'1.161 (7)
N3—C101.157 (7)N3'—C10'1.154 (7)
N4—C141.310 (7)N4'—C14'1.320 (6)
N4—C191.458 (6)N4'—C15'1.468 (6)
N4—C151.466 (7)N4'—C19'1.477 (6)
C1—C21.446 (8)C1'—C2'1.422 (8)
C2—C61.381 (8)C2'—C6'1.396 (7)
C2—C31.412 (8)C2'—C3'1.410 (8)
C4—C111.370 (7)C4'—C11'1.362 (7)
C4—C71.426 (8)C4'—C7'1.425 (7)
C4—C51.523 (8)C4'—C5'1.511 (7)
C5—C81.527 (7)C5'—C9'1.503 (8)
C5—C91.534 (8)C5'—C8'1.512 (7)
C6—C71.390 (7)C6'—C7'1.390 (7)
C7—C101.404 (8)C7'—C10'1.407 (8)
C8—H8A0.9800C8'—H8'A0.9800
C8—H8B0.9800C8'—H8'B0.9800
C8—H8C0.9800C8'—H8'C0.9800
C9—H9A0.9800C9'—H9'A0.9800
C9—H9B0.9800C9'—H9'B0.9800
C9—H9C0.9800C9'—H9'C0.9800
C11—C121.398 (7)C11'—C12'1.405 (8)
C11—H110.9500C11'—H11'0.9500
C12—C131.380 (7)C12'—C13'1.382 (7)
C12—H120.9500C12'—H12'0.9500
C13—C141.396 (8)C13'—C14'1.395 (7)
C13—H130.9500C13'—H13'0.9500
C14—H140.9500C14'—H14'0.9500
C15—C161.501 (7)C15'—C16'1.503 (8)
C15—H15A0.9900C15'—H15C0.9900
C15—H15B0.9900C15'—H15D0.9900
C16—C171.509 (7)C16'—C17'1.522 (8)
C16—H16A0.9900C16'—H16C0.9900
C16—H16B0.9900C16'—H16D0.9900
C17—C181.536 (8)C17'—C18'1.530 (7)
C17—H17A0.9900C17'—H17C0.9900
C17—H17B0.9900C17'—H17D0.9900
C18—C191.508 (7)C18'—C19'1.501 (7)
C18—H18A0.9900C18'—H18C0.9900
C18—H18B0.9900C18'—H18D0.9900
C19—H19A0.9900C19'—H19C0.9900
C19—H19B0.9900C19'—H19D0.9900
C6—O1—C5110.2 (4)C6'—O1'—C5'109.4 (4)
C14—N4—C19123.9 (5)C14'—N4'—C15'122.6 (5)
C14—N4—C15121.3 (5)C14'—N4'—C19'124.6 (5)
C19—N4—C15114.8 (5)C15'—N4'—C19'112.4 (4)
N1—C1—C2175.4 (7)N1'—C1'—C2'178.8 (7)
C6—C2—C3120.7 (6)C6'—C2'—C3'121.4 (5)
C6—C2—C1121.9 (5)C6'—C2'—C1'119.8 (5)
C3—C2—C1117.4 (6)C3'—C2'—C1'118.7 (5)
N2—C3—C2179.1 (8)N2'—C3'—C2'178.7 (7)
C11—C4—C7126.9 (6)C11'—C4'—C7'126.2 (5)
C11—C4—C5127.2 (5)C11'—C4'—C5'126.6 (5)
C7—C4—C5105.9 (5)C7'—C4'—C5'107.2 (5)
O1—C5—C4103.2 (4)O1'—C5'—C9'105.1 (4)
O1—C5—C8106.0 (5)O1'—C5'—C4'102.9 (4)
C4—C5—C8111.1 (5)C9'—C5'—C4'115.5 (5)
O1—C5—C9105.7 (4)O1'—C5'—C8'105.8 (5)
C4—C5—C9116.2 (5)C9'—C5'—C8'113.3 (5)
C8—C5—C9113.5 (5)C4'—C5'—C8'112.8 (5)
O1—C6—C2115.8 (5)O1'—C6'—C7'110.9 (5)
O1—C6—C7110.5 (5)O1'—C6'—C2'115.4 (5)
C2—C6—C7133.7 (6)C7'—C6'—C2'133.7 (6)
C6—C7—C10128.1 (5)C6'—C7'—C10'126.9 (5)
C6—C7—C4109.9 (5)C6'—C7'—C4'109.5 (5)
C10—C7—C4122.0 (5)C10'—C7'—C4'123.6 (5)
C5—C8—H8A109.5C5'—C8'—H8'A109.5
C5—C8—H8B109.5C5'—C8'—H8'B109.5
H8A—C8—H8B109.5H8'A—C8'—H8'B109.5
C5—C8—H8C109.5C5'—C8'—H8'C109.5
H8A—C8—H8C109.5H8'A—C8'—H8'C109.5
H8B—C8—H8C109.5H8'B—C8'—H8'C109.5
C5—C9—H9A109.5C5'—C9'—H9'A109.5
C5—C9—H9B109.5C5'—C9'—H9'B109.5
H9A—C9—H9B109.5H9'A—C9'—H9'B109.5
C5—C9—H9C109.5C5'—C9'—H9'C109.5
H9A—C9—H9C109.5H9'A—C9'—H9'C109.5
H9B—C9—H9C109.5H9'B—C9'—H9'C109.5
N3—C10—C7176.2 (6)N3'—C10'—C7'174.9 (6)
C4—C11—C12125.3 (6)C4'—C11'—C12'126.7 (6)
C4—C11—H11117.3C4'—C11'—H11'116.7
C12—C11—H11117.3C12'—C11'—H11'116.7
C13—C12—C11124.1 (6)C13'—C12'—C11'122.9 (6)
C13—C12—H12118.0C13'—C12'—H12'118.5
C11—C12—H12118.0C11'—C12'—H12'118.5
C12—C13—C14118.4 (6)C12'—C13'—C14'119.8 (6)
C12—C13—H13120.8C12'—C13'—H13'120.1
C14—C13—H13120.8C14'—C13'—H13'120.1
N4—C14—C13127.5 (6)N4'—C14'—C13'126.3 (6)
N4—C14—H14116.3N4'—C14'—H14'116.9
C13—C14—H14116.3C13'—C14'—H14'116.9
N4—C15—C16109.8 (5)N4'—C15'—C16'111.6 (5)
N4—C15—H15A109.7N4'—C15'—H15C109.3
C16—C15—H15A109.7C16'—C15'—H15C109.3
N4—C15—H15B109.7N4'—C15'—H15D109.3
C16—C15—H15B109.7C16'—C15'—H15D109.3
H15A—C15—H15B108.2H15C—C15'—H15D108.0
C15—C16—C17110.3 (5)C15'—C16'—C17'110.2 (5)
C15—C16—H16A109.6C15'—C16'—H16C109.6
C17—C16—H16A109.6C17'—C16'—H16C109.6
C15—C16—H16B109.6C15'—C16'—H16D109.6
C17—C16—H16B109.6C17'—C16'—H16D109.6
H16A—C16—H16B108.1H16C—C16'—H16D108.1
C16—C17—C18109.8 (5)C16'—C17'—C18'110.6 (5)
C16—C17—H17A109.7C16'—C17'—H17C109.5
C18—C17—H17A109.7C18'—C17'—H17C109.5
C16—C17—H17B109.7C16'—C17'—H17D109.5
C18—C17—H17B109.7C18'—C17'—H17D109.5
H17A—C17—H17B108.2H17C—C17'—H17D108.1
C19—C18—C17110.8 (5)C19'—C18'—C17'110.6 (5)
C19—C18—H18A109.5C19'—C18'—H18C109.5
C17—C18—H18A109.5C17'—C18'—H18C109.5
C19—C18—H18B109.5C19'—C18'—H18D109.5
C17—C18—H18B109.5C17'—C18'—H18D109.5
H18A—C18—H18B108.1H18C—C18'—H18D108.1
N4—C19—C18110.3 (5)N4'—C19'—C18'109.6 (4)
N4—C19—H19A109.6N4'—C19'—H19C109.8
C18—C19—H19A109.6C18'—C19'—H19C109.8
N4—C19—H19B109.6N4'—C19'—H19D109.8
C18—C19—H19B109.6C18'—C19'—H19D109.8
H19A—C19—H19B108.1H19C—C19'—H19D108.2
C6—O1—C5—C45.6 (5)C6'—O1'—C5'—C9'121.2 (5)
C6—O1—C5—C8111.2 (5)C6'—O1'—C5'—C4'0.1 (6)
C6—O1—C5—C9128.1 (5)C6'—O1'—C5'—C8'118.7 (5)
C11—C4—C5—O1174.9 (5)C11'—C4'—C5'—O1'178.6 (5)
C7—C4—C5—O15.7 (6)C7'—C4'—C5'—O1'1.6 (6)
C11—C4—C5—C871.9 (7)C11'—C4'—C5'—C9'64.7 (8)
C7—C4—C5—C8107.4 (5)C7'—C4'—C5'—C9'115.5 (5)
C11—C4—C5—C959.8 (7)C11'—C4'—C5'—C8'67.9 (8)
C7—C4—C5—C9120.8 (5)C7'—C4'—C5'—C8'112.0 (5)
C5—O1—C6—C2177.3 (5)C5'—O1'—C6'—C7'1.7 (7)
C5—O1—C6—C73.3 (6)C5'—O1'—C6'—C2'176.7 (5)
C3—C2—C6—O10.9 (8)C3'—C2'—C6'—O1'0.9 (8)
C1—C2—C6—O1176.6 (5)C1'—C2'—C6'—O1'176.6 (5)
C3—C2—C6—C7178.2 (6)C3'—C2'—C6'—C7'177.0 (7)
C1—C2—C6—C74.3 (11)C1'—C2'—C6'—C7'1.3 (11)
O1—C6—C7—C10179.1 (5)O1'—C6'—C7'—C10'177.2 (5)
C2—C6—C7—C101.7 (11)C2'—C6'—C7'—C10'4.8 (11)
O1—C6—C7—C40.6 (7)O1'—C6'—C7'—C4'2.8 (7)
C2—C6—C7—C4178.5 (6)C2'—C6'—C7'—C4'175.2 (6)
C11—C4—C7—C6176.5 (5)C11'—C4'—C7'—C6'177.5 (6)
C5—C4—C7—C64.1 (7)C5'—C4'—C7'—C6'2.7 (6)
C11—C4—C7—C103.8 (10)C11'—C4'—C7'—C10'2.5 (10)
C5—C4—C7—C10175.6 (5)C5'—C4'—C7'—C10'177.3 (5)
C7—C4—C11—C12174.8 (6)C7'—C4'—C11'—C12'177.9 (6)
C5—C4—C11—C124.4 (10)C5'—C4'—C11'—C12'2.3 (10)
C4—C11—C12—C13179.1 (5)C4'—C11'—C12'—C13'177.1 (6)
C11—C12—C13—C14177.9 (6)C11'—C12'—C13'—C14'179.4 (5)
C19—N4—C14—C131.9 (10)C15'—N4'—C14'—C13'173.0 (6)
C15—N4—C14—C13176.8 (6)C19'—N4'—C14'—C13'0.6 (10)
C12—C13—C14—N4174.1 (5)C12'—C13'—C14'—N4'177.6 (5)
C14—N4—C15—C16121.5 (6)C14'—N4'—C15'—C16'115.0 (6)
C19—N4—C15—C1657.3 (6)C19'—N4'—C15'—C16'58.3 (7)
N4—C15—C16—C1757.2 (7)N4'—C15'—C16'—C17'55.0 (7)
C15—C16—C17—C1857.4 (7)C15'—C16'—C17'—C18'53.9 (7)
C16—C17—C18—C1955.7 (7)C16'—C17'—C18'—C19'55.8 (7)
C14—N4—C19—C18123.2 (6)C14'—N4'—C19'—C18'114.3 (6)
C15—N4—C19—C1855.5 (7)C15'—N4'—C19'—C18'58.9 (7)
C17—C18—C19—N453.5 (7)C17'—C18'—C19'—N4'57.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.952.493.324 (8)147
C14—H14···N10.952.583.498 (8)161
C14—H14···N1ii0.952.613.484 (8)153
C16—H16D···N2ii0.992.553.477 (8)156
C19—H19A···N2iii0.992.603.568 (8)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H20N4O
Mr320.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)119
a, b, c (Å)15.094 (4), 18.994 (5), 13.332 (4)
β (°) 116.193 (8)
V3)3429.7 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.25 × 0.09
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.733, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
18712, 11128, 5766
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.203, 1.02
No. of reflections11128
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13'—H13'···N2i0.952.493.324 (8)147
C14—H14···N1'0.952.583.498 (8)161
C14'—H14'···N1ii0.952.613.484 (8)153
C16'—H16D···N2ii0.992.553.477 (8)156
C19—H19A···N2'iii0.992.603.568 (8)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance in data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBock, H., Nick, S., Seitz, W., Nather, C. & Bats, J. W. (1996). Z. Naturforsch. Teil B Chem. Sci. 51, 153–171.  CAS Google Scholar
First citationBruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64. Submitted.  Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationReck, G. & Dahne, L. (2006). Private communication (refcode NEQHAT01). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds