organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Bromo-2-hy­droxy­benzyl­­idene­amino)-3-methyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
*Correspondence e-mail: wangcg23@yahoo.com.cn

(Received 15 October 2007; accepted 22 November 2007; online 4 January 2008)

In the title compound, C10H9BrN4OS, the triazole ring forms a dihedral angle of 72.05 (14)° with the benzene ring. The conformation of the mol­ecule is stabilized by intra­molecular O—H⋯·N hydrogen bonding. The crystal packing is determined by inter­molecular N—H⋯S inter­actions, a short Br⋯S contact of 3.4464 (13) Å and ππ stacking of the triazole rings and of the benzene rings (centroid–centroid distances of 3.4109 and 3.569 Å, respectively).

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Awad et al. (1991[Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483-486.]); Eweiss et al. (1986[Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem. 23, 1451-1458.]); Ji et al. (2002[Ji, B.-M., Du, C.-X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252-255.]); Mohan (1983[Mohan, J. A. G. (1983). Indian J. Chem. Sect. B, 22, 270-271.]); Xu et al. (2002[Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). J. Chem. Res. Chin. Univ. 18, 284-286.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9BrN4OS

  • Mr = 313.18

  • Triclinic, [P \overline 1]

  • a = 6.9780 (8) Å

  • b = 7.1529 (8) Å

  • c = 12.3119 (14) Å

  • α = 83.561 (2)°

  • β = 88.820 (2)°

  • γ = 79.987 (2)°

  • V = 601.35 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.58 mm−1

  • T = 293 (2) K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (Blessing; 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.404, Tmax = 0.519 (expected range = 0.307–0.394)

  • 4340 measured reflections

  • 2560 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.10

  • 2560 reflections

  • 161 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.862 (19) 2.44 (2) 3.295 (3) 173 (5)
O1—H1⋯N4 0.821 (19) 1.97 (4) 2.676 (4) 144 (5)
O1—H1⋯N1ii 0.821 (19) 2.69 (5) 3.178 (5) 120 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, compounds containing 1H-1,2,4-triazole group have attracted much interest because compounds containing this ring system are well known as efficient fungicides in pesticides and they exhibit good plant-growth regulatory activity for a wide variety of crops (Xu et al., 2002). In addition, amine- and thione-substituted triazoles have been studied as anti-inflamatory and antimicrobial agents (Eweiss et al., 1986; Awad et al., 1991). In a search for new triazole compounds with better biological activity, the title compound, (I), was synthesized and we report here its crystal structure.

The molecule of (I) exists in the thione tautomeric form, with the S==C distance of 1.681 (4) Å, which indicates a substantial double-bond character (Allen et al., 1987). The dihedral angle between the thione-substituted triazole ring and the benzene ring is 72.05 (14)°. The crystal packing is determined by intermolecular N–H···S interaction (Table 1), short Br···S contact of 3.4464 (13) Å and π-π stacking of the triazole rings (centroid-to-centrod distance of 3.410 Å) and π-π stacking of the benzene rings (centroid-to-centrod distance of 3.569 Å).

Related literature top

For related literature, see: Allen et al. (1987); Awad et al. (1991); Eweiss et al. (1986); Ji et al. (2002); Mohan (1983); Xu et al. (2002).

Experimental top

4-Amino-5-methyl-1,2,4-triazole-3-thione (0.02 mol in 15 ml e thanol), synthesized according to a reported method (Mohan, 1983), was added to a solution of 5-bromosalicylaldehyde (0.02 mol in 20 ml). Then several drops of concentrated sulfuric acid were added to the solution, which was then refluxed for 1 h. The mixture was filtered and crystallized from ethanol to afford the title compound (I). Yellow plates of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

The N– and O-bound H atoms were located in difference maps and refined with distance restraints [N–H = 0.86 (2) Å, O–H = 0.82 (2) Å] and the constraints for Uiso(H) = 1.5Ueq(N, O).

The C-bound H atoms were geometrically placed in idealized positions [C–H = 0.96 Å (methyl), 0.96 Å (aromatic), 0.96 Å (methine)]. Isotropic displacement parameters of H atoms were: Uiso(H)=1.5Ueq(C, methyl), Uiso(H) = 1.2Ueq(C, aromatic and methine).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of the two-dimensional network. Hydrogen bonds are shown as dashed lines.
4-(5-Bromo-2-hydroxylbenzylideneamino)-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H9BrN4OSZ = 2
Mr = 313.18F(000) = 312
Triclinic, P1Dx = 1.730 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9780 (8) ÅCell parameters from 1728 reflections
b = 7.1529 (8) Åθ = 2.9–26.2°
c = 12.3119 (14) ŵ = 3.58 mm1
α = 83.561 (2)°T = 293 K
β = 88.820 (2)°Plate, yellow
γ = 79.987 (2)°0.30 × 0.28 × 0.26 mm
V = 601.35 (12) Å3
Data collection top
Bruker SMART CCD
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing; 1995)
h = 88
Tmin = 0.404, Tmax = 0.519k = 98
4340 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.455P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.59 e Å3
Crystal data top
C10H9BrN4OSγ = 79.987 (2)°
Mr = 313.18V = 601.35 (12) Å3
Triclinic, P1Z = 2
a = 6.9780 (8) ÅMo Kα radiation
b = 7.1529 (8) ŵ = 3.58 mm1
c = 12.3119 (14) ÅT = 293 K
α = 83.561 (2)°0.30 × 0.28 × 0.26 mm
β = 88.820 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(Blessing; 1995)
1977 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.519Rint = 0.038
4340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.42 e Å3
2560 reflectionsΔρmin = 0.59 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79546 (7)0.36351 (7)0.64076 (4)0.05088 (18)
C10.2803 (6)0.3219 (6)0.0688 (3)0.0386 (9)
C20.5585 (6)0.2362 (6)0.0218 (3)0.0383 (9)
C30.7615 (6)0.1524 (7)0.0409 (4)0.0500 (11)
H3A0.78320.14810.11780.075*
H3B0.78860.02530.00380.075*
H3C0.84570.22900.01340.075*
C40.5834 (6)0.2340 (6)0.2504 (3)0.0387 (9)
H40.55140.36630.23710.046*
C50.6609 (5)0.1469 (6)0.3552 (3)0.0350 (9)
C60.6983 (5)0.0480 (6)0.3857 (3)0.0377 (9)
C70.7585 (6)0.1188 (6)0.4911 (3)0.0415 (10)
H70.78070.25000.51140.050*
C80.7855 (6)0.0030 (6)0.5659 (3)0.0422 (10)
H80.82590.04560.63650.051*
C90.7521 (5)0.2008 (6)0.5355 (3)0.0356 (9)
C100.6892 (6)0.2752 (6)0.4322 (3)0.0384 (9)
H100.66540.40650.41260.046*
N10.4330 (5)0.3251 (5)0.0963 (3)0.0419 (8)
N20.2652 (5)0.3746 (5)0.0387 (3)0.0372 (8)
N30.4714 (5)0.2332 (4)0.0799 (3)0.0355 (8)
N40.5586 (5)0.1292 (5)0.1755 (3)0.0398 (8)
O10.6727 (5)0.1790 (4)0.3183 (3)0.0500 (8)
S10.10932 (16)0.35060 (17)0.16652 (9)0.0457 (3)
H20.161 (5)0.440 (6)0.069 (4)0.069*
H10.640 (8)0.123 (7)0.258 (2)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0587 (3)0.0552 (3)0.0373 (3)0.0031 (2)0.0109 (2)0.0079 (2)
C10.044 (2)0.037 (2)0.035 (2)0.0072 (18)0.0095 (18)0.0040 (18)
C20.043 (2)0.033 (2)0.041 (2)0.0098 (18)0.0050 (18)0.0098 (18)
C30.047 (3)0.047 (3)0.055 (3)0.004 (2)0.003 (2)0.005 (2)
C40.038 (2)0.040 (2)0.036 (2)0.0030 (18)0.0052 (17)0.0012 (18)
C50.0302 (19)0.041 (2)0.034 (2)0.0083 (17)0.0078 (16)0.0013 (18)
C60.0279 (19)0.033 (2)0.047 (2)0.0047 (16)0.0057 (17)0.0024 (19)
C70.039 (2)0.036 (2)0.045 (2)0.0042 (18)0.0069 (19)0.0075 (19)
C80.035 (2)0.050 (3)0.036 (2)0.0016 (19)0.0069 (17)0.010 (2)
C90.0286 (19)0.040 (2)0.038 (2)0.0015 (16)0.0091 (16)0.0059 (18)
C100.038 (2)0.033 (2)0.039 (2)0.0024 (17)0.0083 (18)0.0067 (18)
N10.046 (2)0.046 (2)0.0337 (18)0.0062 (17)0.0059 (16)0.0034 (16)
N20.0391 (19)0.0380 (19)0.0325 (18)0.0021 (15)0.0100 (15)0.0007 (15)
N30.0396 (18)0.0323 (18)0.0345 (18)0.0054 (15)0.0119 (14)0.0024 (14)
N40.0440 (19)0.0285 (17)0.0389 (19)0.0097 (14)0.0155 (15)0.0086 (15)
O10.062 (2)0.0376 (17)0.0481 (19)0.0034 (15)0.0136 (16)0.0005 (15)
S10.0458 (6)0.0541 (7)0.0325 (6)0.0015 (5)0.0055 (4)0.0006 (5)
Geometric parameters (Å, º) top
Br1—C91.898 (4)C5—C101.431 (5)
C1—N21.336 (5)C6—O11.356 (5)
C1—N31.375 (5)C6—C71.385 (6)
C1—S11.681 (4)C7—C81.373 (6)
C2—N11.312 (5)C7—H70.9300
C2—N31.381 (5)C8—C91.402 (6)
C2—C31.463 (6)C8—H80.9300
C3—H3A0.9600C9—C101.372 (5)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600N1—N21.370 (5)
C4—N41.285 (5)N2—H20.862 (19)
C4—C51.440 (5)N3—N41.409 (4)
C4—H40.9300O1—H10.821 (19)
C5—C61.383 (5)
N2—C1—N3102.6 (3)C8—C7—C6120.5 (4)
N2—C1—S1129.2 (3)C8—C7—H7119.7
N3—C1—S1128.2 (3)C6—C7—H7119.7
N1—C2—N3109.8 (4)C7—C8—C9119.9 (4)
N1—C2—C3126.3 (4)C7—C8—H8120.1
N3—C2—C3123.9 (4)C9—C8—H8120.1
C2—C3—H3A109.5C10—C9—C8120.8 (4)
C2—C3—H3B109.5C10—C9—Br1120.7 (3)
H3A—C3—H3B109.5C8—C9—Br1118.4 (3)
C2—C3—H3C109.5C9—C10—C5118.8 (4)
H3A—C3—H3C109.5C9—C10—H10120.6
H3B—C3—H3C109.5C5—C10—H10120.6
N4—C4—C5120.0 (4)C2—N1—N2104.2 (3)
N4—C4—H4120.0C1—N2—N1114.4 (3)
C5—C4—H4120.0C1—N2—H2123 (3)
C6—C5—C10119.7 (4)N1—N2—H2122 (3)
C6—C5—C4124.2 (4)C1—N3—C2109.0 (3)
C10—C5—C4116.0 (4)C1—N3—N4126.2 (3)
O1—C6—C5123.4 (4)C2—N3—N4124.1 (3)
O1—C6—C7116.3 (4)C4—N4—N3113.7 (3)
C5—C6—C7120.3 (4)C6—O1—H1109 (4)
N4—C4—C5—C65.4 (6)C3—C2—N1—N2179.5 (4)
N4—C4—C5—C10178.1 (4)N3—C1—N2—N10.2 (4)
C10—C5—C6—O1179.1 (3)S1—C1—N2—N1178.5 (3)
C4—C5—C6—O12.6 (6)C2—N1—N2—C10.5 (4)
C10—C5—C6—C71.5 (6)N2—C1—N3—C20.7 (4)
C4—C5—C6—C7174.9 (4)S1—C1—N3—C2178.0 (3)
O1—C6—C7—C8179.0 (4)N2—C1—N3—N4171.4 (3)
C5—C6—C7—C81.3 (6)S1—C1—N3—N47.3 (6)
C6—C7—C8—C90.0 (6)N1—C2—N3—C11.1 (4)
C7—C8—C9—C101.2 (6)C3—C2—N3—C1179.3 (4)
C7—C8—C9—Br1179.0 (3)N1—C2—N3—N4172.1 (3)
C8—C9—C10—C50.9 (6)C3—C2—N3—N48.4 (6)
Br1—C9—C10—C5179.2 (3)C5—C4—N4—N3176.5 (3)
C6—C5—C10—C90.4 (6)C1—N3—N4—C471.7 (5)
C4—C5—C10—C9176.3 (3)C2—N3—N4—C4118.9 (4)
N3—C2—N1—N20.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.86 (2)2.44 (2)3.295 (3)173 (5)
O1—H1···N40.82 (2)1.97 (4)2.676 (4)144 (5)
O1—H1···N1ii0.82 (2)2.69 (5)3.178 (5)120 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9BrN4OS
Mr313.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9780 (8), 7.1529 (8), 12.3119 (14)
α, β, γ (°)83.561 (2), 88.820 (2), 79.987 (2)
V3)601.35 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.58
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(Blessing; 1995)
Tmin, Tmax0.404, 0.519
No. of measured, independent and
observed [I > 2σ(I)] reflections
4340, 2560, 1977
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.10
No. of reflections2560
No. of parameters161
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.59

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862 (19)2.44 (2)3.295 (3)173 (5)
O1—H1···N40.821 (19)1.97 (4)2.676 (4)144 (5)
O1—H1···N1ii0.821 (19)2.69 (5)3.178 (5)120 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

We thank Xianggao Meng for assistance with refinement of the crystal structure.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483–486.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem. 23, 1451–1458.  CrossRef CAS Google Scholar
First citationJi, B.-M., Du, C.-X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252–255.  CAS Google Scholar
First citationMohan, J. A. G. (1983). Indian J. Chem. Sect. B, 22, 270–271.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). J. Chem. Res. Chin. Univ. 18, 284–286.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds