metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­nitro­phen­yl)-5-ferrocenyl-3-methyl-1H-pyrazole

aDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 November 2007; accepted 17 December 2007; online 4 January 2008)

In the title compound, [Fe(C5H5)(C15H11N4O4)], the dinitro­phenyl and cyclo­penta­dienyl rings make dihedral angles of 53.61 (6) and 23.11 (9)°, respectively, with the pyrazole unit. The two cyclo­penta­dienyl rings are in an eclipsed conformation. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions, which link mol­ecules into chains parallel to the b axis.

Related literature

For related literature, see: Beer et al. (1998[Beer, D. P., Gale, A. P. & Chen, Z. (1998). Adv. Phys. Org. Chem. 31, 1-89.]); Erasmus et al. (1996[Erasmus, J. J. C., Lamprecht, G. J., Swarts, J. C., Roodt, A. & Oskarsson, Å. (1996). Acta Cryst. C52, 3000-3002.]); Fabbrizzi & Poggi (1995[Fabbrizzi, L. & Poggi, A. (1995). Chem. Soc. Rev. 24, 197-202.]); Gilchrist (1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Limited.]); Basurto et al. (2007[Basurto, S., Riant, O., Moreno, D., Rojo, J. & Torroba, T. (2007). J. Org. Chem. 72, 4673-4688.]); Shi et al. (2005[Shi, Y.-C., Sui, C.-X. & Cheng, H.-J. (2005). Acta Cryst. E61, m1563-m1565.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H11N4O4)]

  • Mr = 432.22

  • Triclinic, [P \overline 1]

  • a = 7.1073 (2) Å

  • b = 11.5339 (3) Å

  • c = 11.7575 (3) Å

  • α = 103.822 (1)°

  • β = 93.061 (1)°

  • γ = 98.822 (2)°

  • V = 920.76 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.815, Tmax = 0.882

  • 24588 measured reflections

  • 6096 independent reflections

  • 4741 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.107

  • S = 1.01

  • 6096 reflections

  • 263 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.93 2.46 3.380 (3) 170
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT (Version 6.0a) and APEX2 (Version 1.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT (Version 6.0a) and APEX2 (Version 1.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The design of molecular receptors having the ability to selectively bind and sense cationic, anionic or even neutral guests via a macroscopic physical response is an area of intense activity (Fabbrizzi et al., 1995). Chemical sensors bearing ferrocene nuclei as part of the sensing unit have been widely studied (Basurto et al., 2007). Ferrocene has largely proved to be a simple and remarkably robust building block for the construction of redox-responsive receptors (Beer et al., 1998). To build a sensor molecule with dual response (redox &optical), the title compound has been synthesized and studied to understand the above said properties.

The pyrazole ring has delocalized bonds (Gilchrist,1997; Shi et al., 2005). The substitued cyclopentadienyl rings are parallel to each other. The cyclopentadienyl rings are oriented at angles of 23.11 (9)° and 23.45 (7)° with respect to the planar pyrazole ring. Furthermore, the pyrazole and dinitrophenyl rings make a dihedral angle of 53.61 (6) °. The nitro groups are planar and oriented at angles of 26.61 (12)° and 9.53 (10)° to the phenyl ring. The two cyclopentadienyl rings of the ferrocenyl group are in a nearly eclipsed conformation (Erasmus et al., 1996).

The molecules in crystal are connected via intermolecular C—H···O interaction into a chain extended along the [010] direction.

Related literature top

For related literature, see: Beer et al. (1998); Erasmus et al. (1996); Fabbrizzi & Poggi (1995); Gilchrist (1997); Basurto et al. (2007); Shi et al. (2005).

Experimental top

2,4-Dinitrophenylhydrazine (1 g, 5 mmol) was added to a solution of ferrocenoylacetone (1.35 g, 5 mmol) and a catalytic amount of p-toluenesulfonic acid in 50 ml of toluene. Tthe mixture was refluxed with a Dean-Stark apparatus for 14 h. The solvent was evaporated under vacuum, and the resulting black residue was chromatographed on a silica-gel column using petroleum ether-ethylacetate (9:1) mixture as eluent. The red band was collected which offered dark-red crystal. (62% yield, m.p. 433–435 K).

Refinement top

H atoms were geometrically positioned (C—H = 0.93 - 0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The cyclopentadienyl group C15—C19 was refined as a rigid group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST (Nardelli,1995).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title molecule with displecement ellipsoids drawn at 20% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c axis.
1-(2,4-Dinitrophenyl)-5-ferrocenyl-3-methyl-1H-pyrazole top
Crystal data top
[Fe(C5H5)(C15H11N4O4)]Z = 2
Mr = 432.22F(000) = 444
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1073 (2) ÅCell parameters from 2637 reflections
b = 11.5339 (3) Åθ = 2.2–25°
c = 11.7575 (3) ŵ = 0.86 mm1
α = 103.822 (1)°T = 293 K
β = 93.061 (1)°Prism, black
γ = 98.822 (2)°0.25 × 0.15 × 0.15 mm
V = 920.76 (4) Å3
Data collection top
Bruker APEXII Kappa
diffractometer
6096 independent reflections
Radiation source: fine-focus sealed tube4741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 31.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.815, Tmax = 0.882k = 1616
24588 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1435P]
where P = (Fo2 + 2Fc2)/3
6096 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.38 e Å3
10 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C5H5)(C15H11N4O4)]γ = 98.822 (2)°
Mr = 432.22V = 920.76 (4) Å3
Triclinic, P1Z = 2
a = 7.1073 (2) ÅMo Kα radiation
b = 11.5339 (3) ŵ = 0.86 mm1
c = 11.7575 (3) ÅT = 293 K
α = 103.822 (1)°0.25 × 0.15 × 0.15 mm
β = 93.061 (1)°
Data collection top
Bruker APEXII Kappa
diffractometer
6096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4741 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.882Rint = 0.027
24588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03610 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
6096 reflectionsΔρmin = 0.25 e Å3
263 parameters
Special details top

Experimental. Spectral data: LC Mass:[M]+:432(m/e);1H NMR (CDCl3, 400 MHz, \d in p.p.m.): 2.34 (3H, s, CH~3~), 4.24(7H, s, Fc), 4.13 (2H, s, Fc), 7.56 (1H, d, Ar, J~0~=8.6 MHz), 8.40 (1H, d, Ar, J~0~=8.6 MHz),8.72 (1H, s, Ar).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5094 (2)0.03689 (14)0.34324 (13)0.0422 (3)
C20.5263 (3)0.08426 (16)0.31250 (14)0.0498 (4)
H20.63930.10810.28700.060*
C30.3723 (3)0.16830 (14)0.32047 (14)0.0512 (4)
C40.2039 (3)0.13645 (15)0.35988 (15)0.0529 (4)
H40.10390.19490.36880.063*
C50.1875 (3)0.01628 (15)0.38571 (14)0.0470 (3)
H50.07310.00630.41020.056*
C60.3372 (2)0.07273 (13)0.37625 (12)0.0384 (3)
C70.2340 (3)0.35505 (15)0.50396 (14)0.0467 (3)
C80.2893 (3)0.37968 (14)0.39813 (14)0.0464 (3)
H80.29520.45300.37750.056*
C90.3328 (2)0.27444 (13)0.33134 (12)0.0386 (3)
C100.3901 (2)0.24686 (13)0.21167 (12)0.0391 (3)
C110.3667 (3)0.13264 (15)0.12710 (14)0.0483 (4)
H110.31000.05400.13920.058*
C120.4404 (3)0.1534 (2)0.02226 (15)0.0589 (5)
H120.44230.09140.05080.071*
C130.5071 (3)0.2775 (2)0.04050 (17)0.0611 (5)
H130.56320.31710.01780.073*
C140.4769 (2)0.33690 (18)0.15634 (15)0.0507 (4)
H140.50940.42420.19230.061*
C150.0579 (3)0.1718 (2)0.0393 (2)0.0712 (5)
H150.11290.09530.05640.085*
C160.0325 (3)0.2853 (2)0.1168 (2)0.0706 (5)
H160.06650.30200.19810.085*
C170.0510 (4)0.3715 (2)0.0615 (3)0.0817 (6)
H170.08350.45910.09600.098*
C180.0794 (4)0.3085 (3)0.0561 (2)0.0858 (6)
H180.13350.34460.11720.103*
C190.0095 (3)0.1847 (3)0.0667 (2)0.0784 (5)
H190.00950.11860.13690.094*
C200.1706 (3)0.44028 (19)0.60557 (17)0.0650 (5)
H20A0.03870.44520.58920.098*
H20B0.24720.51920.61780.098*
H20C0.18520.41130.67500.098*
Fe10.22444 (3)0.247896 (19)0.064950 (18)0.03941 (8)
N10.6829 (2)0.12430 (16)0.34359 (15)0.0571 (4)
N20.3891 (4)0.29740 (15)0.28358 (15)0.0726 (5)
N30.2412 (2)0.24113 (13)0.50543 (11)0.0473 (3)
N40.3046 (2)0.19276 (11)0.39851 (11)0.0410 (3)
O10.7007 (2)0.22452 (14)0.40943 (16)0.0728 (4)
O20.8042 (3)0.08766 (19)0.28032 (19)0.0951 (6)
O30.5291 (3)0.32384 (15)0.23593 (15)0.0900 (6)
O40.2588 (4)0.37005 (15)0.3009 (2)0.1185 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (8)0.0398 (7)0.0421 (7)0.0131 (6)0.0009 (6)0.0189 (6)
C20.0665 (10)0.0494 (9)0.0442 (8)0.0288 (8)0.0083 (7)0.0198 (7)
C30.0860 (13)0.0318 (7)0.0396 (7)0.0181 (8)0.0010 (7)0.0129 (6)
C40.0735 (12)0.0377 (8)0.0477 (8)0.0022 (8)0.0003 (8)0.0169 (6)
C50.0546 (9)0.0441 (8)0.0456 (8)0.0109 (7)0.0064 (7)0.0156 (6)
C60.0527 (8)0.0322 (6)0.0334 (6)0.0123 (6)0.0002 (5)0.0119 (5)
C70.0562 (9)0.0412 (8)0.0423 (7)0.0166 (7)0.0008 (6)0.0055 (6)
C80.0620 (10)0.0333 (7)0.0458 (8)0.0162 (7)0.0000 (7)0.0094 (6)
C90.0474 (8)0.0330 (6)0.0374 (6)0.0113 (6)0.0019 (5)0.0113 (5)
C100.0429 (7)0.0403 (7)0.0376 (6)0.0151 (6)0.0008 (5)0.0127 (5)
C110.0639 (10)0.0451 (8)0.0408 (7)0.0264 (7)0.0015 (7)0.0108 (6)
C120.0645 (11)0.0810 (13)0.0396 (8)0.0435 (10)0.0051 (7)0.0120 (8)
C130.0450 (9)0.0962 (16)0.0514 (9)0.0185 (9)0.0093 (7)0.0315 (10)
C140.0434 (8)0.0590 (10)0.0516 (9)0.0024 (7)0.0028 (7)0.0232 (8)
C150.0454 (10)0.0815 (10)0.0814 (11)0.0065 (9)0.0104 (9)0.0163 (9)
C160.0478 (10)0.0945 (13)0.0715 (10)0.0339 (10)0.0015 (8)0.0117 (8)
C170.0743 (14)0.0694 (10)0.1093 (14)0.0405 (10)0.0153 (11)0.0251 (9)
C180.0756 (14)0.1228 (15)0.0822 (11)0.0391 (12)0.0092 (10)0.0602 (12)
C190.0677 (13)0.1053 (12)0.0567 (8)0.0298 (11)0.0220 (8)0.0065 (9)
C200.0869 (14)0.0567 (11)0.0522 (10)0.0314 (10)0.0096 (9)0.0020 (8)
Fe10.03942 (12)0.04333 (13)0.03942 (12)0.01542 (9)0.00190 (8)0.01395 (9)
N10.0497 (8)0.0612 (10)0.0707 (10)0.0128 (7)0.0001 (7)0.0357 (8)
N20.1285 (18)0.0403 (8)0.0541 (9)0.0290 (10)0.0004 (10)0.0142 (7)
N30.0641 (9)0.0435 (7)0.0376 (6)0.0190 (6)0.0080 (6)0.0094 (5)
N40.0573 (8)0.0325 (6)0.0365 (6)0.0155 (5)0.0044 (5)0.0102 (5)
O10.0628 (9)0.0566 (8)0.0960 (11)0.0018 (7)0.0147 (8)0.0257 (8)
O20.0702 (10)0.1045 (14)0.1224 (16)0.0192 (10)0.0402 (11)0.0418 (12)
O30.1459 (17)0.0619 (10)0.0723 (10)0.0583 (11)0.0112 (10)0.0105 (8)
O40.177 (2)0.0373 (8)0.147 (2)0.0134 (11)0.0416 (17)0.0319 (10)
Geometric parameters (Å, º) top
C1—C21.383 (2)C13—C141.414 (3)
C1—C61.396 (2)C13—Fe12.0328 (18)
C1—N11.468 (2)C13—H130.9800
C2—C31.369 (3)C14—Fe12.0325 (17)
C2—H20.9300C14—H140.9800
C3—C41.376 (3)C15—C161.384 (3)
C3—N21.474 (2)C15—C191.391 (4)
C4—C51.371 (2)C15—Fe12.039 (2)
C4—H40.9300C15—H150.9800
C5—C61.389 (2)C16—C171.390 (4)
C5—H50.9300C16—Fe12.031 (2)
C6—N41.4036 (18)C16—H160.9800
C7—N31.327 (2)C17—C181.441 (4)
C7—C81.404 (2)C17—Fe12.0285 (19)
C7—C201.493 (2)C17—H170.9800
C8—C91.368 (2)C18—C191.411 (4)
C8—H80.9300C18—Fe12.0290 (18)
C9—N41.3658 (18)C18—H180.9800
C9—C101.461 (2)C19—Fe12.032 (2)
C10—C111.429 (2)C19—H190.9800
C10—C141.432 (2)C20—H20A0.9600
C10—Fe12.0394 (13)C20—H20B0.9600
C11—C121.422 (2)C20—H20C0.9600
C11—Fe12.0299 (15)N1—O11.212 (2)
C11—H110.9800N1—O21.227 (2)
C12—C131.398 (3)N2—O41.210 (3)
C12—Fe12.0318 (17)N2—O31.212 (3)
C12—H120.9800N3—N41.3775 (18)
C2—C1—C6121.03 (15)Fe1—C17—H17126.3
C2—C1—N1116.47 (15)C19—C18—C17106.3 (2)
C6—C1—N1122.45 (14)C19—C18—Fe169.78 (11)
C3—C2—C1118.33 (16)C17—C18—Fe169.17 (11)
C3—C2—H2120.8C19—C18—H18126.9
C1—C2—H2120.8C17—C18—H18126.9
C2—C3—C4122.51 (15)Fe1—C18—H18126.9
C2—C3—N2117.97 (18)C15—C19—C18108.7 (2)
C4—C3—N2119.51 (18)C15—C19—Fe170.27 (12)
C5—C4—C3118.24 (16)C18—C19—Fe169.55 (12)
C5—C4—H4120.9C15—C19—H19125.7
C3—C4—H4120.9C18—C19—H19125.7
C4—C5—C6121.72 (17)Fe1—C19—H19125.7
C4—C5—H5119.1C7—C20—H20A109.5
C6—C5—H5119.1C7—C20—H20B109.5
C5—C6—C1117.96 (14)H20A—C20—H20B109.5
C5—C6—N4117.92 (14)C7—C20—H20C109.5
C1—C6—N4124.11 (14)H20A—C20—H20C109.5
N3—C7—C8111.62 (14)H20B—C20—H20C109.5
N3—C7—C20121.14 (16)C17—Fe1—C1841.62 (11)
C8—C7—C20127.23 (16)C17—Fe1—C11159.40 (10)
C9—C8—C7106.43 (14)C18—Fe1—C11156.84 (10)
C9—C8—H8126.8C17—Fe1—C1640.04 (11)
C7—C8—H8126.8C18—Fe1—C1668.37 (10)
N4—C9—C8105.52 (13)C11—Fe1—C16123.17 (9)
N4—C9—C10124.59 (13)C17—Fe1—C12158.55 (11)
C8—C9—C10129.85 (14)C18—Fe1—C12121.65 (10)
C11—C10—C14107.16 (14)C11—Fe1—C1240.99 (7)
C11—C10—C9129.07 (14)C16—Fe1—C12159.78 (10)
C14—C10—C9123.73 (14)C17—Fe1—C1968.40 (11)
C11—C10—Fe169.09 (8)C18—Fe1—C1940.67 (11)
C14—C10—Fe169.15 (8)C11—Fe1—C19121.03 (10)
C9—C10—Fe1124.97 (10)C16—Fe1—C1967.29 (10)
C12—C11—C10107.78 (16)C12—Fe1—C19107.79 (9)
C12—C11—Fe169.58 (9)C17—Fe1—C14107.97 (10)
C10—C11—Fe169.80 (8)C18—Fe1—C14124.35 (10)
C12—C11—H11126.1C11—Fe1—C1469.05 (7)
C10—C11—H11126.1C16—Fe1—C14122.61 (9)
Fe1—C11—H11126.1C12—Fe1—C1468.44 (8)
C13—C12—C11108.44 (16)C19—Fe1—C14161.20 (10)
C13—C12—Fe169.92 (10)C17—Fe1—C13123.33 (11)
C11—C12—Fe169.43 (9)C18—Fe1—C13108.12 (10)
C13—C12—H12125.8C11—Fe1—C1368.55 (8)
C11—C12—H12125.8C16—Fe1—C13158.67 (11)
Fe1—C12—H12125.8C12—Fe1—C1340.23 (9)
C12—C13—C14108.75 (16)C19—Fe1—C13124.66 (9)
C12—C13—Fe169.85 (11)C14—Fe1—C1340.72 (8)
C14—C13—Fe169.63 (10)C17—Fe1—C1567.57 (11)
C12—C13—H13125.6C18—Fe1—C1568.07 (11)
C14—C13—H13125.6C11—Fe1—C15106.92 (9)
Fe1—C13—H13125.6C16—Fe1—C1539.76 (10)
C13—C14—C10107.86 (17)C12—Fe1—C15123.95 (10)
C13—C14—Fe169.65 (11)C19—Fe1—C1539.96 (10)
C10—C14—Fe169.66 (9)C14—Fe1—C15157.41 (9)
C13—C14—H14126.1C13—Fe1—C15160.32 (10)
C10—C14—H14126.1C17—Fe1—C10123.26 (9)
Fe1—C14—H14126.1C18—Fe1—C10161.03 (10)
C16—C15—C19108.5 (2)C11—Fe1—C1041.11 (6)
C16—C15—Fe169.83 (12)C16—Fe1—C10107.29 (8)
C19—C15—Fe169.77 (13)C12—Fe1—C1068.91 (6)
C16—C15—H15125.8C19—Fe1—C10156.41 (10)
C19—C15—H15125.8C14—Fe1—C1041.19 (6)
Fe1—C15—H15125.8C13—Fe1—C1068.82 (7)
C15—C16—C17109.2 (2)C15—Fe1—C10121.20 (8)
C15—C16—Fe170.41 (12)O1—N1—O2124.75 (19)
C17—C16—Fe169.88 (13)O1—N1—C1118.46 (17)
C15—C16—H16125.4O2—N1—C1116.70 (18)
C17—C16—H16125.4O4—N2—O3124.54 (19)
Fe1—C16—H16125.4O4—N2—C3117.2 (2)
C16—C17—C18107.3 (2)O3—N2—C3118.2 (2)
C16—C17—Fe170.08 (11)C7—N3—N4103.94 (12)
C18—C17—Fe169.21 (12)C9—N4—N3112.48 (11)
C16—C17—H17126.3C9—N4—C6129.99 (12)
C18—C17—H17126.3N3—N4—C6117.48 (11)
C6—C1—C2—C33.0 (2)C13—C12—Fe1—C1880.62 (15)
N1—C1—C2—C3174.66 (14)C11—C12—Fe1—C18159.58 (13)
C1—C2—C3—C41.3 (2)C13—C12—Fe1—C11119.80 (16)
C1—C2—C3—N2177.89 (14)C13—C12—Fe1—C16164.5 (2)
C2—C3—C4—C53.7 (2)C11—C12—Fe1—C1644.7 (3)
N2—C3—C4—C5175.45 (15)C13—C12—Fe1—C19123.06 (13)
C3—C4—C5—C61.9 (2)C11—C12—Fe1—C19117.14 (13)
C4—C5—C6—C12.2 (2)C13—C12—Fe1—C1437.36 (10)
C4—C5—C6—N4176.74 (14)C11—C12—Fe1—C1482.44 (12)
C2—C1—C6—C54.7 (2)C11—C12—Fe1—C13119.80 (16)
N1—C1—C6—C5172.86 (14)C13—C12—Fe1—C15164.08 (12)
C2—C1—C6—N4174.17 (13)C11—C12—Fe1—C1576.12 (14)
N1—C1—C6—N48.3 (2)C13—C12—Fe1—C1081.74 (11)
N3—C7—C8—C90.0 (2)C11—C12—Fe1—C1038.06 (10)
C20—C7—C8—C9179.23 (18)C15—C19—Fe1—C1780.42 (17)
C7—C8—C9—N40.63 (18)C18—C19—Fe1—C1739.38 (16)
C7—C8—C9—C10177.00 (16)C15—C19—Fe1—C18119.8 (2)
N4—C9—C10—C1123.5 (2)C15—C19—Fe1—C1179.09 (17)
C8—C9—C10—C11153.74 (17)C18—C19—Fe1—C11161.12 (15)
N4—C9—C10—C14159.30 (15)C15—C19—Fe1—C1637.04 (15)
C8—C9—C10—C1423.5 (3)C18—C19—Fe1—C1682.75 (17)
N4—C9—C10—Fe1113.88 (15)C15—C19—Fe1—C12122.03 (15)
C8—C9—C10—Fe163.4 (2)C18—C19—Fe1—C12118.18 (16)
C14—C10—C11—C120.56 (18)C15—C19—Fe1—C14162.7 (2)
C9—C10—C11—C12178.14 (15)C18—C19—Fe1—C1442.9 (4)
Fe1—C10—C11—C1259.44 (11)C15—C19—Fe1—C13163.18 (15)
C14—C10—C11—Fe158.88 (11)C18—C19—Fe1—C1377.02 (18)
C9—C10—C11—Fe1118.70 (15)C18—C19—Fe1—C15119.8 (2)
C10—C11—C12—C130.36 (19)C15—C19—Fe1—C1044.1 (3)
Fe1—C11—C12—C1359.22 (12)C18—C19—Fe1—C10163.93 (18)
C10—C11—C12—Fe159.58 (11)C13—C14—Fe1—C17120.57 (14)
C11—C12—C13—C140.0 (2)C10—C14—Fe1—C17120.32 (13)
Fe1—C12—C13—C1458.93 (12)C13—C14—Fe1—C1877.49 (16)
C11—C12—C13—Fe158.92 (12)C10—C14—Fe1—C18163.41 (12)
C12—C13—C14—C100.3 (2)C13—C14—Fe1—C1181.06 (13)
Fe1—C13—C14—C1059.40 (11)C10—C14—Fe1—C1138.04 (9)
C12—C13—C14—Fe159.07 (13)C13—C14—Fe1—C16162.16 (13)
C11—C10—C14—C130.55 (18)C10—C14—Fe1—C1678.74 (13)
C9—C10—C14—C13178.29 (14)C13—C14—Fe1—C1236.93 (12)
Fe1—C10—C14—C1359.39 (12)C10—C14—Fe1—C1282.17 (11)
C11—C10—C14—Fe158.84 (11)C13—C14—Fe1—C1945.0 (3)
C9—C10—C14—Fe1118.89 (14)C10—C14—Fe1—C19164.1 (3)
C19—C15—C16—C170.0 (2)C10—C14—Fe1—C13119.10 (16)
Fe1—C15—C16—C1759.27 (15)C13—C14—Fe1—C15164.8 (2)
C19—C15—C16—Fe159.27 (15)C10—C14—Fe1—C1545.7 (3)
C15—C16—C17—C180.2 (2)C13—C14—Fe1—C10119.10 (16)
Fe1—C16—C17—C1859.42 (14)C12—C13—Fe1—C17161.33 (13)
C15—C16—C17—Fe159.60 (15)C14—C13—Fe1—C1778.58 (15)
C16—C17—C18—C190.3 (2)C12—C13—Fe1—C18117.91 (13)
Fe1—C17—C18—C1960.25 (14)C14—C13—Fe1—C18122.00 (14)
C16—C17—C18—Fe159.97 (14)C12—C13—Fe1—C1137.71 (10)
C16—C15—C19—C180.2 (2)C14—C13—Fe1—C1182.39 (11)
Fe1—C15—C19—C1859.13 (15)C12—C13—Fe1—C16165.3 (2)
C16—C15—C19—Fe159.31 (15)C14—C13—Fe1—C1645.2 (3)
C17—C18—C19—C150.3 (2)C14—C13—Fe1—C12120.09 (15)
Fe1—C18—C19—C1559.58 (15)C12—C13—Fe1—C1975.98 (15)
C17—C18—C19—Fe159.85 (14)C14—C13—Fe1—C19163.93 (13)
C16—C17—Fe1—C18118.5 (2)C12—C13—Fe1—C14120.09 (15)
C16—C17—Fe1—C1141.5 (3)C12—C13—Fe1—C1542.5 (3)
C18—C17—Fe1—C11160.0 (2)C14—C13—Fe1—C15162.6 (2)
C18—C17—Fe1—C16118.5 (2)C12—C13—Fe1—C1081.98 (10)
C16—C17—Fe1—C12163.7 (2)C14—C13—Fe1—C1038.11 (10)
C18—C17—Fe1—C1245.2 (3)C16—C15—Fe1—C1736.98 (16)
C16—C17—Fe1—C1979.97 (16)C19—C15—Fe1—C1782.68 (18)
C18—C17—Fe1—C1938.50 (16)C16—C15—Fe1—C1882.10 (17)
C16—C17—Fe1—C14119.65 (14)C19—C15—Fe1—C1837.57 (16)
C18—C17—Fe1—C14121.88 (16)C16—C15—Fe1—C11121.91 (15)
C16—C17—Fe1—C13161.88 (13)C19—C15—Fe1—C11118.42 (15)
C18—C17—Fe1—C1379.65 (18)C19—C15—Fe1—C16119.7 (2)
C16—C17—Fe1—C1536.73 (15)C16—C15—Fe1—C12163.64 (13)
C18—C17—Fe1—C1581.74 (17)C19—C15—Fe1—C1276.69 (17)
C16—C17—Fe1—C1076.82 (16)C16—C15—Fe1—C19119.7 (2)
C18—C17—Fe1—C10164.72 (14)C16—C15—Fe1—C1445.9 (3)
C19—C18—Fe1—C17117.4 (2)C19—C15—Fe1—C14165.6 (2)
C19—C18—Fe1—C1144.8 (3)C16—C15—Fe1—C13164.6 (2)
C17—C18—Fe1—C11162.2 (2)C19—C15—Fe1—C1345.0 (3)
C19—C18—Fe1—C1679.89 (16)C16—C15—Fe1—C1079.35 (16)
C17—C18—Fe1—C1637.47 (16)C19—C15—Fe1—C10160.98 (14)
C19—C18—Fe1—C1280.40 (18)C11—C10—Fe1—C17161.99 (13)
C17—C18—Fe1—C12162.24 (16)C14—C10—Fe1—C1779.09 (15)
C17—C18—Fe1—C19117.4 (2)C9—C10—Fe1—C1738.21 (18)
C19—C18—Fe1—C14164.58 (14)C11—C10—Fe1—C18165.4 (3)
C17—C18—Fe1—C1478.06 (18)C14—C10—Fe1—C1846.5 (3)
C19—C18—Fe1—C13122.51 (16)C9—C10—Fe1—C1870.8 (3)
C17—C18—Fe1—C13120.13 (17)C14—C10—Fe1—C11118.92 (15)
C19—C18—Fe1—C1536.93 (15)C9—C10—Fe1—C11123.78 (18)
C17—C18—Fe1—C1580.43 (17)C11—C10—Fe1—C16120.99 (12)
C19—C18—Fe1—C10160.1 (2)C14—C10—Fe1—C16120.09 (13)
C17—C18—Fe1—C1042.7 (3)C9—C10—Fe1—C162.79 (16)
C12—C11—Fe1—C17166.3 (3)C11—C10—Fe1—C1237.96 (11)
C10—C11—Fe1—C1747.3 (3)C14—C10—Fe1—C1280.96 (12)
C12—C11—Fe1—C1849.0 (3)C9—C10—Fe1—C12161.75 (16)
C10—C11—Fe1—C18168.0 (2)C11—C10—Fe1—C1948.3 (2)
C12—C11—Fe1—C16163.11 (13)C14—C10—Fe1—C19167.2 (2)
C10—C11—Fe1—C1677.93 (13)C9—C10—Fe1—C1975.5 (2)
C10—C11—Fe1—C12118.96 (16)C11—C10—Fe1—C14118.92 (15)
C12—C11—Fe1—C1981.45 (15)C9—C10—Fe1—C14117.30 (17)
C10—C11—Fe1—C19159.59 (12)C11—C10—Fe1—C1381.24 (12)
C12—C11—Fe1—C1480.84 (13)C14—C10—Fe1—C1337.68 (12)
C10—C11—Fe1—C1438.12 (10)C9—C10—Fe1—C13154.98 (15)
C12—C11—Fe1—C1337.03 (12)C11—C10—Fe1—C1579.82 (13)
C10—C11—Fe1—C1381.94 (11)C14—C10—Fe1—C15161.26 (12)
C12—C11—Fe1—C15122.68 (13)C9—C10—Fe1—C1543.96 (16)
C10—C11—Fe1—C15118.36 (12)C2—C1—N1—O1151.82 (15)
C12—C11—Fe1—C10118.96 (16)C6—C1—N1—O125.8 (2)
C15—C16—Fe1—C17120.2 (2)C2—C1—N1—O224.8 (2)
C15—C16—Fe1—C1881.29 (17)C6—C1—N1—O2157.56 (17)
C17—C16—Fe1—C1838.91 (16)C2—C3—N2—O4173.5 (2)
C15—C16—Fe1—C1175.99 (16)C4—C3—N2—O47.3 (3)
C17—C16—Fe1—C11163.82 (14)C2—C3—N2—O38.1 (3)
C15—C16—Fe1—C1242.5 (3)C4—C3—N2—O3171.12 (17)
C17—C16—Fe1—C12162.7 (2)C8—C7—N3—N40.66 (19)
C15—C16—Fe1—C1937.22 (16)C20—C7—N3—N4179.92 (17)
C17—C16—Fe1—C1982.97 (17)C8—C9—N4—N31.10 (18)
C15—C16—Fe1—C14160.88 (13)C10—C9—N4—N3176.70 (14)
C17—C16—Fe1—C1478.93 (16)C8—C9—N4—C6176.26 (16)
C15—C16—Fe1—C13165.8 (2)C10—C9—N4—C65.9 (3)
C17—C16—Fe1—C1345.6 (3)C7—N3—N4—C91.10 (18)
C17—C16—Fe1—C15120.2 (2)C7—N3—N4—C6176.62 (14)
C15—C16—Fe1—C10118.31 (14)C5—C6—N4—C9127.16 (17)
C17—C16—Fe1—C10121.50 (15)C1—C6—N4—C951.7 (2)
C13—C12—Fe1—C1747.0 (3)C5—C6—N4—N355.59 (19)
C11—C12—Fe1—C17166.8 (2)C1—C6—N4—N3125.57 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.463.380 (3)170
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H11N4O4)]
Mr432.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1073 (2), 11.5339 (3), 11.7575 (3)
α, β, γ (°)103.822 (1), 93.061 (1), 98.822 (2)
V3)920.76 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII Kappa
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
24588, 6096, 4741
Rint0.027
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.01
No. of reflections6096
No. of parameters263
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PARST (Nardelli,1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.463.380 (3)170
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the CSIR, India, for financial support.

References

First citationBasurto, S., Riant, O., Moreno, D., Rojo, J. & Torroba, T. (2007). J. Org. Chem. 72, 4673–4688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeer, D. P., Gale, A. P. & Chen, Z. (1998). Adv. Phys. Org. Chem. 31, 1–89.  CAS Google Scholar
First citationBruker (2004). SAINT (Version 6.0a) and APEX2 (Version 1.22). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErasmus, J. J. C., Lamprecht, G. J., Swarts, J. C., Roodt, A. & Oskarsson, Å. (1996). Acta Cryst. C52, 3000–3002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFabbrizzi, L. & Poggi, A. (1995). Chem. Soc. Rev. 24, 197–202.  CrossRef CAS Web of Science Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Limited.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShi, Y.-C., Sui, C.-X. & Cheng, H.-J. (2005). Acta Cryst. E61, m1563–m1565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds