organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic form of 1,2,4,5-tetra­cyclo­hexyl­benzene

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 13 December 2007; accepted 18 December 2007; online 4 January 2008)

The mol­ecule of the title compound, C30H46, has a crystallographically imposed inversion center and the cyclo­hexyl groups are oriented with their methine H atoms pointing towards one another (H⋯H = 2.04 Å).

Related literature

For related structures, see: Mague et al. (2008a[Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008a). Acta Cryst. E64, o375.],b[Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008b). Acta Cryst. E64, o335.]).

[Scheme 1]

Experimental

Crystal data
  • C30H46

  • Mr = 406.67

  • Triclinic, [P \overline 1]

  • a = 6.014 (1) Å

  • b = 10.001 (1) Å

  • c = 10.513 (2) Å

  • α = 91.164 (2)°

  • β = 94.815 (2)°

  • γ = 106.336 (3)°

  • V = 604.01 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 100 (2) K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.993

  • 4730 measured reflections

  • 2363 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.03

  • 2363 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystallization of 1,2,4,5-tetracylohexylbenzene (C30H46) from hot methylcyclohexane forms colorless needle-shaped crystals together with a smaller quantity having a distinctly different block-shaped morphology. Many of the needles appear twinned but a fragment cut from a larger needle proved to be single and to be a triclinic modification. The molecule has crystallographically imposed centrosymmetry with the cyclohexyl rings adopting the chair conformation and oriented with their methine hydrogen atoms pointed towards one another (H4···H10 distance 2.04 Å) as is the case in the monoclinic modification (Mague et al., 2008a). Again, there are very few close contacts between the ortho-disposed cyclohexyl rings, the shortest being H4···H15b (2.30 Å). Additional short contacts are H3···H9b (2.28 Å) and H3···H11a' (2.14 Å). The plane defined by the atoms C5, C6, C8, C9 ("seat" of the chair) is inclined to the plane of the aromatic ring by 87.3 (2)° while that for the other cyclohexyl ring (C11, C12, C14, C15) is inclined at an angle of only 49.4 (2)°, a much greater disparity in orientation than observed in the monoclinic modification. Another difference is the absence of any significant C—H···π interactions in the triclinic form.

Related literature top

For related structures, see: Mague et al. 2008a, 2008b).

Experimental top

The title compound was prepared by the literature method (Mague et al., 2008a)

Refinement top

H-atoms were placed in calculated positions (C–H = 0.95 - 0.98 Å) and refined as riding on their carriers with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are represented by spheres of arbitrary radius. Primed atoms are related to unprimed atoms by the symmetry operation -x, 1 - y, -z.
1,2,4,5-tetracyclohexylbenzene top
Crystal data top
C30H46Z = 1
Mr = 406.67F(000) = 226
Triclinic, P1Dx = 1.118 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.014 (1) ÅCell parameters from 2522 reflections
b = 10.001 (1) Åθ = 2.8–28.3°
c = 10.513 (2) ŵ = 0.06 mm1
α = 91.164 (2)°T = 100 K
β = 94.815 (2)°Plate, colorless
γ = 106.336 (3)°0.20 × 0.13 × 0.10 mm
V = 604.01 (16) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2363 independent reflections
Radiation source: fine-focus sealed tube1862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1212
Tmin = 0.940, Tmax = 0.993l = 1212
4730 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.1811P]
where P = (Fo2 + 2Fc2)/3
2363 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C30H46γ = 106.336 (3)°
Mr = 406.67V = 604.01 (16) Å3
Triclinic, P1Z = 1
a = 6.014 (1) ÅMo Kα radiation
b = 10.001 (1) ŵ = 0.06 mm1
c = 10.513 (2) ÅT = 100 K
α = 91.164 (2)°0.20 × 0.13 × 0.10 mm
β = 94.815 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1862 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.993Rint = 0.023
4730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
2363 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (ω scans, 0.3°/scan) at ϕ settings of 0, 120 and 240°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1622 (3)0.08720 (17)0.92456 (15)0.0140 (4)
C20.0316 (3)0.04621 (17)0.87681 (15)0.0141 (4)
C30.1264 (3)0.12910 (17)0.95305 (15)0.0147 (4)
H30.21480.21920.91990.018*
C40.0526 (3)0.10585 (17)0.74528 (15)0.0147 (4)
H40.16600.03180.70220.018*
C50.1482 (3)0.23296 (18)0.75408 (16)0.0179 (4)
H5A0.30310.20560.80330.021*
H5B0.04310.30650.80020.021*
C60.1695 (3)0.29087 (19)0.62131 (16)0.0207 (4)
H6A0.28750.22070.57890.025*
H6B0.22350.37540.63010.025*
C70.0612 (3)0.32752 (18)0.53844 (16)0.0211 (4)
H7A0.17470.40510.57560.025*
H7B0.03860.35890.45180.025*
C80.1570 (3)0.20179 (19)0.52917 (16)0.0201 (4)
H8A0.31180.22960.47980.024*
H8B0.05220.12830.48290.024*
C90.1790 (3)0.14328 (18)0.66175 (15)0.0178 (4)
H9A0.23330.05900.65250.021*
H9B0.29690.21330.70430.021*
C100.3406 (3)0.18370 (17)0.84830 (15)0.0146 (4)
H100.27040.17480.75780.018*
C110.4030 (3)0.33832 (18)0.88976 (16)0.0178 (4)
H11A0.47880.35240.97820.021*
H11B0.25910.36800.88870.021*
C120.5673 (3)0.42760 (18)0.80049 (16)0.0190 (4)
H12A0.48850.41780.71280.023*
H12B0.60750.52700.82960.023*
C130.7888 (3)0.38188 (18)0.79954 (17)0.0197 (4)
H13A0.89020.43730.73860.024*
H13B0.87460.40000.88560.024*
C140.7330 (3)0.22785 (18)0.76158 (16)0.0184 (4)
H14A0.87880.19980.76720.022*
H14B0.66370.21170.67180.022*
C150.5639 (3)0.13813 (18)0.84782 (16)0.0166 (4)
H15A0.63980.14610.93600.020*
H15B0.52380.03920.81740.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0186 (9)0.0177 (9)0.0079 (8)0.0082 (7)0.0026 (6)0.0007 (6)
C20.0180 (9)0.0197 (9)0.0065 (8)0.0083 (7)0.0020 (6)0.0006 (6)
C30.0197 (9)0.0159 (9)0.0085 (8)0.0046 (7)0.0031 (6)0.0002 (6)
C40.0219 (9)0.0135 (8)0.0084 (8)0.0031 (7)0.0066 (7)0.0004 (6)
C50.0230 (9)0.0215 (9)0.0100 (8)0.0071 (7)0.0044 (7)0.0016 (7)
C60.0276 (10)0.0217 (10)0.0151 (9)0.0092 (8)0.0076 (7)0.0024 (7)
C70.0317 (11)0.0208 (9)0.0101 (8)0.0051 (8)0.0067 (7)0.0047 (7)
C80.0274 (10)0.0239 (10)0.0077 (8)0.0047 (8)0.0023 (7)0.0005 (7)
C90.0254 (10)0.0220 (9)0.0078 (8)0.0091 (7)0.0043 (7)0.0002 (7)
C100.0194 (9)0.0187 (9)0.0061 (8)0.0051 (7)0.0046 (6)0.0002 (6)
C110.0220 (9)0.0197 (9)0.0138 (8)0.0071 (7)0.0093 (7)0.0008 (7)
C120.0264 (10)0.0176 (9)0.0143 (9)0.0066 (7)0.0083 (7)0.0008 (7)
C130.0215 (9)0.0221 (10)0.0155 (9)0.0045 (7)0.0081 (7)0.0027 (7)
C140.0205 (9)0.0250 (10)0.0122 (8)0.0087 (7)0.0070 (7)0.0025 (7)
C150.0215 (9)0.0179 (9)0.0112 (8)0.0059 (7)0.0045 (7)0.0017 (7)
Geometric parameters (Å, º) top
C1—C3i1.397 (2)C8—H8B0.9900
C1—C21.402 (2)C9—H9A0.9900
C1—C101.523 (2)C9—H9B0.9900
C2—C31.395 (2)C10—C111.530 (2)
C2—C41.524 (2)C10—C151.535 (2)
C3—C1i1.397 (2)C10—H101.0000
C3—H30.9500C11—C121.532 (2)
C4—C91.529 (2)C11—H11A0.9900
C4—C51.537 (2)C11—H11B0.9900
C4—H41.0000C12—C131.526 (2)
C5—C61.529 (2)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C5—H5B0.9900C13—C141.519 (2)
C6—C71.522 (3)C13—H13A0.9900
C6—H6A0.9900C13—H13B0.9900
C6—H6B0.9900C14—C151.529 (2)
C7—C81.525 (2)C14—H14A0.9900
C7—H7A0.9900C14—H14B0.9900
C7—H7B0.9900C15—H15A0.9900
C8—C91.531 (2)C15—H15B0.9900
C8—H8A0.9900
C3i—C1—C2117.64 (15)C8—C9—H9A109.3
C3i—C1—C10120.34 (15)C4—C9—H9B109.3
C2—C1—C10122.00 (14)C8—C9—H9B109.3
C3—C2—C1118.62 (14)H9A—C9—H9B107.9
C3—C2—C4117.96 (14)C1—C10—C11114.86 (13)
C1—C2—C4123.43 (14)C1—C10—C15111.62 (13)
C2—C3—C1i123.74 (16)C11—C10—C15109.51 (14)
C2—C3—H3118.1C1—C10—H10106.8
C1i—C3—H3118.1C11—C10—H10106.8
C2—C4—C9111.87 (13)C15—C10—H10106.8
C2—C4—C5111.95 (13)C10—C11—C12110.82 (13)
C9—C4—C5110.22 (14)C10—C11—H11A109.5
C2—C4—H4107.5C12—C11—H11A109.5
C9—C4—H4107.5C10—C11—H11B109.5
C5—C4—H4107.5C12—C11—H11B109.5
C6—C5—C4111.24 (14)H11A—C11—H11B108.1
C6—C5—H5A109.4C13—C12—C11110.19 (14)
C4—C5—H5A109.4C13—C12—H12A109.6
C6—C5—H5B109.4C11—C12—H12A109.6
C4—C5—H5B109.4C13—C12—H12B109.6
H5A—C5—H5B108.0C11—C12—H12B109.6
C7—C6—C5111.78 (14)H12A—C12—H12B108.1
C7—C6—H6A109.3C14—C13—C12111.15 (15)
C5—C6—H6A109.3C14—C13—H13A109.4
C7—C6—H6B109.3C12—C13—H13A109.4
C5—C6—H6B109.3C14—C13—H13B109.4
H6A—C6—H6B107.9C12—C13—H13B109.4
C6—C7—C8110.76 (14)H13A—C13—H13B108.0
C6—C7—H7A109.5C13—C14—C15111.44 (14)
C8—C7—H7A109.5C13—C14—H14A109.3
C6—C7—H7B109.5C15—C14—H14A109.3
C8—C7—H7B109.5C13—C14—H14B109.3
H7A—C7—H7B108.1C15—C14—H14B109.3
C7—C8—C9111.34 (14)H14A—C14—H14B108.0
C7—C8—H8A109.4C14—C15—C10111.17 (14)
C9—C8—H8A109.4C14—C15—H15A109.4
C7—C8—H8B109.4C10—C15—H15A109.4
C9—C8—H8B109.4C14—C15—H15B109.4
H8A—C8—H8B108.0C10—C15—H15B109.4
C4—C9—C8111.79 (14)H15A—C15—H15B108.0
C4—C9—H9A109.3
C3i—C1—C2—C30.3 (3)C2—C4—C9—C8179.42 (14)
C10—C1—C2—C3179.24 (15)C5—C4—C9—C855.33 (18)
C3i—C1—C2—C4179.88 (15)C7—C8—C9—C455.87 (19)
C10—C1—C2—C40.9 (2)C3i—C1—C10—C1121.8 (2)
C1—C2—C3—C1i0.3 (3)C2—C1—C10—C11159.29 (15)
C4—C2—C3—C1i179.86 (15)C3i—C1—C10—C15103.66 (18)
C3—C2—C4—C959.29 (19)C2—C1—C10—C1575.29 (19)
C1—C2—C4—C9120.57 (17)C1—C10—C11—C12175.25 (14)
C3—C2—C4—C565.00 (19)C15—C10—C11—C1258.25 (18)
C1—C2—C4—C5115.15 (17)C10—C11—C12—C1358.39 (19)
C2—C4—C5—C6179.65 (14)C11—C12—C13—C1456.47 (18)
C9—C4—C5—C655.15 (18)C12—C13—C14—C1555.38 (19)
C4—C5—C6—C755.97 (19)C13—C14—C15—C1055.66 (19)
C5—C6—C7—C855.61 (19)C1—C10—C15—C14175.04 (13)
C6—C7—C8—C955.23 (19)C11—C10—C15—C1456.63 (17)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC30H46
Mr406.67
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.014 (1), 10.001 (1), 10.513 (2)
α, β, γ (°)91.164 (2), 94.815 (2), 106.336 (3)
V3)604.01 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.940, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4730, 2363, 1862
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.03
No. of reflections2363
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory, and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund (Grant LEQSF (2003–2003)-ENH –TR-67) for the purchase of the APEX diffractometer.

References

First citationBruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008a). Acta Cryst. E64, o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008b). Acta Cryst. E64, o335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds