organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-2,7-di­methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 January 2008; accepted 17 January 2008; online 23 January 2008)

The title compound, C16H13IO2S, was prepared by the oxidation of 5-iodo-2,7-dimethyl-3-phenyl­sulfanyl-1-benzofuran using 3-chloro­perbenzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran system. The phenyl ring is nearly perpendicular to the plane of the benzofuran fragment [89.15 (5)°]. The crystal structure is stabilized by an I⋯O halogen bond [I⋯O = 3.177 (2) Å and C—I⋯O = 175.68 (6)°] linking mol­ecules into centrosymmetric dimers and by a weak C—H⋯π inter­action between a phenyl H atom and the furan ring of the benzofuran system.

Related literature

For the crystal structures of similar 5-iodo-2-methyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3851.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4811.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IO2S

  • Mr = 396.22

  • Monoclinic, C 2/c

  • a = 24.4683 (8) Å

  • b = 8.1686 (3) Å

  • c = 16.2345 (5) Å

  • β = 113.015 (1)°

  • V = 2986.54 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.412, Tmax = 0.640

  • 8756 measured reflections

  • 3261 independent reflections

  • 3063 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 1.17

  • 3261 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cgi 0.95 2.82 3.576 (3) 137
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our continuing studies on the synthesis and structure of 5-iodo-2-methyl-1-benzofuran derivatives, the crystal structures of 5-iodo-2-methyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-2-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b) have been described to the literatures. Herein we report the molecular and crystal structure of the title compound, 2,7-dimethyl-5-iodo-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran system [89.15 (5)°] and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a C—H···π interaction between the phenyl H atom and the furan ring of the benzofuran uint, with a C13—H13···Cgi separation of 2.82 Å (Fig. 2 and Table 1; Cg is the centroid of C1/C2/C7/O1/C8 furan ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring S?O unit, with an C—I···O2ii distance of 3.177 (2) Å (symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 5-iodo-2-methyl-1-benzofuran compounds, see: Choi et al. (2007a,b). For a review on halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperbenzoic acid (77%, 123 mg, 0.55 mmol) was added in small portions to a stirred solution of 2,7-dimethyl-5-iodo-3-phenylsulfanyl-1-benzofuran (190 mg, 0.5 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 450–451 K; Rf = 0.41 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dilute solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π interaction and I···O halogen bond (dotted lines) in crystals of the title compound. [Symmetry code: (i) x, y + 1, z; (ii) -x, y, -z + 1/2.]
5-Iodo-2,7-dimethyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C16H13IO2SF(000) = 1552
Mr = 396.22Dx = 1.762 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7108 reflections
a = 24.4683 (8) Åθ = 2.6–28.3°
b = 8.1686 (3) ŵ = 2.28 mm1
c = 16.2345 (5) ÅT = 173 K
β = 113.015 (1)°Block, colorless
V = 2986.54 (17) Å30.40 × 0.40 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3261 independent reflections
Radiation source: fine-focus sealed tube3063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.7°
ϕ and ω scansh = 3031
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 106
Tmin = 0.412, Tmax = 0.640l = 2020
8756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0277P)2 + 2.4985P]
where P = (Fo2 + 2Fc2)/3
3261 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C16H13IO2SV = 2986.54 (17) Å3
Mr = 396.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.4683 (8) ŵ = 2.28 mm1
b = 8.1686 (3) ÅT = 173 K
c = 16.2345 (5) Å0.40 × 0.40 × 0.20 mm
β = 113.015 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3261 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3063 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 0.640Rint = 0.013
8756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.17Δρmax = 0.29 e Å3
3261 reflectionsΔρmin = 0.80 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.081673 (5)0.158666 (17)0.292529 (8)0.02880 (6)
S0.20287 (2)0.04894 (6)0.48963 (3)0.02319 (10)
O10.13474 (6)0.23728 (17)0.65079 (9)0.0242 (3)
O20.18514 (7)0.13130 (18)0.40076 (10)0.0307 (3)
C10.15689 (8)0.1211 (2)0.54224 (13)0.0217 (4)
C20.09364 (8)0.1507 (2)0.50573 (13)0.0208 (4)
C30.04657 (8)0.1279 (2)0.42283 (13)0.0232 (4)
H30.05240.07870.37380.028*
C40.00869 (9)0.1805 (2)0.41583 (13)0.0246 (4)
C50.01857 (9)0.2510 (3)0.48745 (13)0.0279 (4)
H50.05760.28420.47910.034*
C60.02741 (9)0.2734 (3)0.57055 (13)0.0269 (4)
C70.08257 (8)0.2231 (2)0.57559 (12)0.0220 (4)
C80.17897 (9)0.1754 (2)0.62816 (13)0.0235 (4)
C90.17569 (8)0.1567 (2)0.46631 (14)0.0227 (4)
C100.16105 (9)0.2173 (3)0.38100 (14)0.0277 (4)
H100.16140.14770.33430.033*
C110.14575 (10)0.3820 (3)0.36411 (16)0.0340 (5)
H110.13540.42490.30550.041*
C120.14560 (9)0.4826 (3)0.43195 (17)0.0357 (5)
H120.13520.59470.42010.043*
C130.16055 (10)0.4211 (3)0.51723 (17)0.0357 (5)
H130.16010.49130.56360.043*
C140.17623 (9)0.2583 (3)0.53581 (14)0.0281 (4)
H140.18710.21650.59470.034*
C150.01764 (11)0.3447 (3)0.64905 (16)0.0429 (6)
H15A0.03770.45080.66470.064*
H15B0.02500.35950.63330.064*
H15C0.03380.27020.70030.064*
C160.23960 (9)0.1798 (3)0.69950 (14)0.0317 (5)
H16A0.26850.14590.67470.048*
H16B0.24870.29140.72310.048*
H16C0.24170.10520.74790.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02196 (8)0.03709 (9)0.02313 (8)0.00094 (5)0.00425 (6)0.00074 (5)
S0.0188 (2)0.0262 (2)0.0266 (2)0.00015 (17)0.01100 (18)0.00063 (18)
O10.0225 (6)0.0283 (7)0.0211 (6)0.0003 (5)0.0079 (5)0.0015 (5)
O20.0394 (8)0.0282 (7)0.0312 (8)0.0009 (6)0.0210 (7)0.0059 (6)
C10.0205 (9)0.0227 (9)0.0224 (9)0.0012 (7)0.0090 (7)0.0004 (7)
C20.0201 (9)0.0212 (9)0.0225 (9)0.0011 (7)0.0100 (7)0.0011 (7)
C30.0233 (9)0.0262 (10)0.0207 (9)0.0017 (7)0.0092 (7)0.0022 (7)
C40.0217 (9)0.0288 (10)0.0212 (9)0.0021 (7)0.0060 (7)0.0005 (7)
C50.0205 (9)0.0375 (11)0.0267 (10)0.0033 (8)0.0102 (8)0.0005 (8)
C60.0260 (10)0.0324 (10)0.0241 (9)0.0027 (8)0.0118 (8)0.0008 (8)
C70.0225 (9)0.0240 (9)0.0194 (8)0.0020 (7)0.0082 (7)0.0002 (7)
C80.0219 (9)0.0238 (9)0.0246 (9)0.0008 (7)0.0090 (8)0.0033 (7)
C90.0161 (8)0.0234 (9)0.0295 (10)0.0043 (7)0.0101 (7)0.0038 (7)
C100.0275 (10)0.0283 (10)0.0266 (10)0.0060 (8)0.0099 (8)0.0043 (8)
C110.0279 (10)0.0316 (11)0.0369 (12)0.0067 (9)0.0066 (9)0.0046 (9)
C120.0272 (10)0.0233 (10)0.0561 (14)0.0050 (8)0.0156 (10)0.0013 (9)
C130.0333 (11)0.0303 (11)0.0497 (13)0.0085 (9)0.0230 (10)0.0144 (10)
C140.0274 (10)0.0305 (11)0.0290 (10)0.0073 (8)0.0138 (8)0.0077 (8)
C150.0319 (12)0.0681 (18)0.0300 (12)0.0089 (11)0.0136 (10)0.0117 (11)
C160.0237 (10)0.0408 (12)0.0258 (10)0.0015 (8)0.0044 (8)0.0007 (8)
Geometric parameters (Å, º) top
I—C42.105 (2)C8—C161.483 (3)
I—O2i3.177 (2)C9—C101.380 (3)
S—O21.494 (2)C9—C141.397 (3)
S—C11.759 (2)C10—C111.394 (3)
S—C91.791 (2)C10—H100.9500
O1—C81.369 (2)C11—C121.375 (3)
O1—C71.384 (2)C11—H110.9500
C1—C81.358 (3)C12—C131.381 (3)
C1—C21.445 (3)C12—H120.9500
C2—C71.396 (3)C13—C141.384 (3)
C2—C31.400 (3)C13—H130.9500
C3—C41.381 (3)C14—H140.9500
C3—H30.9500C15—H15A0.9800
C4—C51.400 (3)C15—H15B0.9800
C5—C61.390 (3)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.382 (3)C16—H16B0.9800
C6—C151.503 (3)C16—H16C0.9800
C4—I—O2i175.68 (6)C6—C7—C2125.0 (2)
O2—S—C1108.58 (9)O1—C7—C2110.3 (2)
O2—S—C9105.92 (9)C1—C8—O1111.0 (2)
C1—S—C999.30 (9)C1—C8—C16133.2 (2)
C8—O1—C7106.6 (1)O1—C8—C16115.8 (2)
C8—C1—C2107.4 (2)C10—C9—C14120.9 (2)
C8—C1—S122.3 (2)C10—C9—S118.6 (2)
C2—C1—S130.0 (2)C14—C9—S120.1 (2)
C7—C2—C3119.3 (2)C9—C10—C11119.2 (2)
C7—C2—C1104.7 (2)C12—C11—C10120.2 (2)
C3—C2—C1136.0 (2)C11—C12—C13120.2 (2)
C4—C3—C2116.7 (2)C12—C13—C14120.7 (2)
C3—C4—C5122.8 (2)C13—C14—C9118.7 (2)
C3—C4—I119.4 (1)H15A—C15—H15B109.5
C5—C4—I117.8 (1)H15A—C15—H15C109.5
C6—C5—C4121.5 (2)H15B—C15—H15C109.5
C7—C6—C5114.8 (2)H16A—C16—H16B109.5
C7—C6—C15122.7 (2)H16A—C16—H16C109.5
C5—C6—C15122.5 (2)H16B—C16—H16C109.5
C6—C7—O1124.7 (2)
O2—S—C1—C8130.7 (2)C3—C2—C7—C61.2 (3)
C9—S—C1—C8118.9 (2)C1—C2—C7—C6179.7 (2)
O2—S—C1—C242.4 (2)C3—C2—C7—O1178.9 (2)
C9—S—C1—C268.0 (2)C1—C2—C7—O10.4 (2)
C8—C1—C2—C70.0 (2)C2—C1—C8—O10.5 (2)
S—C1—C2—C7174.0 (2)S—C1—C8—O1174.9 (1)
C8—C1—C2—C3178.1 (2)C2—C1—C8—C16179.7 (2)
S—C1—C2—C34.1 (3)S—C1—C8—C165.2 (3)
C7—C2—C3—C40.3 (3)C7—O1—C8—C10.7 (2)
C1—C2—C3—C4177.6 (2)C7—O1—C8—C16179.5 (2)
C2—C3—C4—C51.1 (3)O2—S—C9—C1018.3 (2)
C2—C3—C4—I178.0 (1)C1—S—C9—C10130.8 (2)
C3—C4—C5—C60.5 (3)O2—S—C9—C14169.2 (2)
I—C4—C5—C6178.5 (2)C1—S—C9—C1456.8 (2)
C4—C5—C6—C70.8 (3)C14—C9—C10—C111.0 (3)
C4—C5—C6—C15178.4 (2)S—C9—C10—C11173.4 (2)
C5—C6—C7—O1178.4 (2)C9—C10—C11—C120.3 (3)
C15—C6—C7—O12.4 (3)C10—C11—C12—C130.0 (3)
C5—C6—C7—C21.7 (3)C11—C12—C13—C140.4 (3)
C15—C6—C7—C2177.5 (2)C12—C13—C14—C91.1 (3)
C8—O1—C7—C6179.40 (19)C10—C9—C14—C131.3 (3)
C8—O1—C7—C20.6 (2)S—C9—C14—C13173.6 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgii0.952.823.576 (3)137
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13IO2S
Mr396.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.4683 (8), 8.1686 (3), 16.2345 (5)
β (°) 113.015 (1)
V3)2986.54 (17)
Z8
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.412, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
8756, 3261, 3063
Rint0.013
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.17
No. of reflections3261
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.80

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.952.823.576 (3)137.4
Symmetry code: (i) x, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART (Version 5.631) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds