organic compounds
4,4-Bis(4-methylphenylsulfanyl)-1,1-diphenyl-2-azabuta-1,3-diene
aInstitut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France, and bInstitute of Molecular Chemistry, Université de Bourgogne, UMR 5260, 9 Avenue A. Savary, 21078 Dijon, France
*Correspondence e-mail: marek.kubicki@u-bourgogne.fr
In the title compound, C29H25NS2, both the Cl atoms of the azadiene precursor 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene are replaced by two vicinal S-p-tolyl substituents attached to the terminal C atom of a π-conjugated 2-azabutadiene array. The azadiene chain is planar to within 0.01 Å. One of the phenyl rings seems to be slightly π-conjugated with the azadiene core [dihedral angle 5.1 (2)°].
Related literature
Some related structures of alkoxo- (Jacquot et al., 2000), cyano- (Jacquot-Rousseau et al., 2002) and iPrS-substituted (Jacquot-Rousseau et al., 2005) 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-dienes (Jacquot et al., 1999) have been reported. For related literature, see: Tanimoto et al. (1976); Truce & Boudakian (1956).
Experimental
Crystal data
|
Data collection: KappaCCD Server Software (Nonius, 1997); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807066615/gw2031sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807066615/gw2031Isup2.hkl
4,4-Dichloro-1,1-diphenyl-2-azabuta-1,3-diene (3) (1.1 mmol) was stirred with an excess of 4-toluenethiolate (8 mmol) in dry DMF (10 ml). The reaction mixture was kept at room temperature for 8 h, then poured into water (100 ml) and extracted with diethyl ether (150 ml). The organic solution was washed three times with water, dried over anhydrous sodium sulfate and evaporated. The crude residue was recristallized from ethanol (75% yield). 1H NMR: δ = 2.30 p.p.m. (s, 3H, Ar—CH3); 2.33 p.p.m. (s, 3H, Ar—CH3);), 6.99–7.02 p.p.m. (m, 8H, phenyl) 7.10 p.p.m. (s, 1H, C=CH), 7.23–7.28 p.p.m. (m, 10H, Ar—H).
The hydrogen H(2) bound to the carbon C(2) of the azadienic chain as well as those of p-methyl groups (C22 and C29) were located from difference Fourier map and isotropically refined. Other aromatic H atoms were included in calculated positions and treated in a riding model with isotropic displacement parameters set to 1.2 times those of carbon atoms bearing them.
Data collection: KappaCCD Server Software (Nonius, 1997); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. View of (4 b) with ellipsoids at the 30% probability level. | |
Fig. 2. p-S-tolyl substitution on 1,1-dichloroethylene. | |
Fig. 3. p-S-tolyl substitution on an azadienic chain. |
C29H25NS2 | Z = 2 |
Mr = 451.66 | F(000) = 476 |
Triclinic, P1 | Dx = 1.263 Mg m−3 |
Hall symbol: -P 1 | Melting point: 382 K |
a = 6.934 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.3009 (2) Å | Cell parameters from 3954 reflections |
c = 14.4247 (3) Å | θ = 1.0–27.5° |
α = 101.7371 (8)° | µ = 0.24 mm−1 |
β = 98.2522 (7)° | T = 120 K |
γ = 93.040 (1)° | Irregular, yellow |
V = 1187.90 (4) Å3 | 0.2 × 0.12 × 0.08 mm |
Nonius KappaCCD diffractometer | 4695 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 27.4°, θmin = 1.5° |
CCD scans | h = −8→8 |
7710 measured reflections | k = −12→15 |
5329 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0329P)2 + 0.5208P] where P = (Fo2 + 2Fc2)/3 |
5329 reflections | (Δ/σ)max = 0.001 |
317 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C29H25NS2 | γ = 93.040 (1)° |
Mr = 451.66 | V = 1187.90 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.934 (1) Å | Mo Kα radiation |
b = 12.3009 (2) Å | µ = 0.24 mm−1 |
c = 14.4247 (3) Å | T = 120 K |
α = 101.7371 (8)° | 0.2 × 0.12 × 0.08 mm |
β = 98.2522 (7)° |
Nonius KappaCCD diffractometer | 4695 reflections with I > 2σ(I) |
7710 measured reflections | Rint = 0.019 |
5329 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.27 e Å−3 |
5329 reflections | Δρmin = −0.25 e Å−3 |
317 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22781 (5) | 0.37867 (3) | 0.35024 (2) | 0.02290 (9) | |
S2 | 0.43297 (4) | 0.52776 (3) | 0.23783 (2) | 0.02161 (9) | |
N | 0.48657 (16) | 0.21771 (9) | 0.26950 (8) | 0.0221 (2) | |
C1 | 0.58163 (18) | 0.13424 (11) | 0.23639 (9) | 0.0204 (3) | |
C2 | 0.50043 (19) | 0.31661 (11) | 0.23787 (10) | 0.0227 (3) | |
C3 | 0.39300 (18) | 0.40002 (11) | 0.27163 (9) | 0.0200 (3) | |
C4 | 0.71038 (19) | 0.13495 (10) | 0.16171 (9) | 0.0206 (3) | |
C5 | 0.6304 (2) | 0.12895 (14) | 0.06658 (11) | 0.0328 (3) | |
H5 | 0.4953 | 0.1238 | 0.0489 | 0.039* | |
C6 | 0.7506 (3) | 0.13066 (16) | −0.00219 (12) | 0.0415 (4) | |
H6 | 0.6960 | 0.1270 | −0.0656 | 0.050* | |
C7 | 0.9508 (2) | 0.13778 (14) | 0.02340 (12) | 0.0364 (4) | |
H7 | 1.0312 | 0.1378 | −0.0230 | 0.044* | |
C8 | 1.0317 (2) | 0.14488 (13) | 0.11728 (12) | 0.0350 (3) | |
H8 | 1.1670 | 0.1506 | 0.1345 | 0.042* | |
C9 | 0.9128 (2) | 0.14354 (12) | 0.18644 (11) | 0.0287 (3) | |
H9 | 0.9686 | 0.1484 | 0.2499 | 0.034* | |
C10 | 0.56071 (18) | 0.03303 (11) | 0.27658 (9) | 0.0207 (3) | |
C11 | 0.6700 (2) | −0.05758 (11) | 0.25308 (10) | 0.0250 (3) | |
H11 | 0.7553 | −0.0568 | 0.2089 | 0.030* | |
C12 | 0.6528 (2) | −0.14933 (12) | 0.29507 (11) | 0.0293 (3) | |
H12 | 0.7284 | −0.2087 | 0.2799 | 0.035* | |
C13 | 0.5238 (2) | −0.15238 (12) | 0.35923 (11) | 0.0285 (3) | |
H13 | 0.5126 | −0.2136 | 0.3874 | 0.034* | |
C14 | 0.4112 (2) | −0.06400 (13) | 0.38151 (12) | 0.0322 (3) | |
H14 | 0.3228 | −0.0664 | 0.4240 | 0.039* | |
C15 | 0.4296 (2) | 0.02781 (12) | 0.34092 (11) | 0.0290 (3) | |
H15 | 0.3537 | 0.0869 | 0.3566 | 0.035* | |
C16 | 0.19592 (18) | 0.55484 (11) | 0.18701 (9) | 0.0200 (3) | |
C17 | 0.05190 (19) | 0.47143 (11) | 0.13858 (10) | 0.0231 (3) | |
H17 | 0.0744 | 0.3969 | 0.1344 | 0.028* | |
C18 | −0.1256 (2) | 0.50030 (12) | 0.09652 (10) | 0.0258 (3) | |
H18 | −0.2222 | 0.4443 | 0.0652 | 0.031* | |
C19 | −0.1623 (2) | 0.61123 (12) | 0.10010 (10) | 0.0249 (3) | |
C20 | −0.0167 (2) | 0.69289 (12) | 0.14901 (10) | 0.0269 (3) | |
H20 | −0.0387 | 0.7675 | 0.1528 | 0.032* | |
C21 | 0.1609 (2) | 0.66593 (11) | 0.19237 (10) | 0.0255 (3) | |
H21 | 0.2563 | 0.7221 | 0.2249 | 0.031* | |
C22 | −0.3522 (2) | 0.64249 (15) | 0.05100 (12) | 0.0328 (3) | |
C23 | 0.16434 (19) | 0.51460 (10) | 0.39797 (9) | 0.0195 (3) | |
C24 | −0.02989 (19) | 0.53814 (11) | 0.38031 (9) | 0.0217 (3) | |
H24 | −0.1223 | 0.4848 | 0.3408 | 0.026* | |
C25 | −0.08547 (19) | 0.64104 (11) | 0.42158 (10) | 0.0233 (3) | |
H25 | −0.2158 | 0.6559 | 0.4098 | 0.028* | |
C26 | 0.0502 (2) | 0.72288 (11) | 0.48054 (9) | 0.0222 (3) | |
C27 | 0.2438 (2) | 0.69758 (11) | 0.49862 (9) | 0.0231 (3) | |
H27 | 0.3362 | 0.7509 | 0.5383 | 0.028* | |
C28 | 0.30109 (19) | 0.59443 (11) | 0.45858 (9) | 0.0218 (3) | |
H28 | 0.4305 | 0.5786 | 0.4721 | 0.026* | |
C29 | −0.0105 (3) | 0.83537 (13) | 0.52391 (12) | 0.0316 (3) | |
H2 | 0.587 (2) | 0.3271 (13) | 0.1916 (11) | 0.023 (4)* | |
H221 | −0.460 (3) | 0.6112 (18) | 0.0711 (16) | 0.060 (6)* | |
H222 | −0.370 (3) | 0.6152 (19) | −0.0180 (18) | 0.065 (7)* | |
H223 | −0.357 (3) | 0.722 (2) | 0.0618 (17) | 0.075 (7)* | |
H291 | −0.049 (3) | 0.8755 (17) | 0.4753 (15) | 0.050 (5)* | |
H292 | 0.094 (3) | 0.8815 (18) | 0.5682 (15) | 0.055 (6)* | |
H293 | −0.120 (3) | 0.8270 (19) | 0.5548 (16) | 0.066 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02781 (18) | 0.01708 (16) | 0.02706 (18) | 0.00498 (12) | 0.01078 (13) | 0.00695 (13) |
S2 | 0.01964 (16) | 0.02080 (17) | 0.02704 (18) | 0.00391 (12) | 0.00537 (12) | 0.00951 (13) |
N | 0.0233 (5) | 0.0201 (5) | 0.0235 (6) | 0.0061 (4) | 0.0038 (4) | 0.0045 (4) |
C1 | 0.0199 (6) | 0.0198 (6) | 0.0200 (6) | 0.0040 (5) | 0.0010 (5) | 0.0021 (5) |
C2 | 0.0229 (6) | 0.0226 (6) | 0.0235 (7) | 0.0053 (5) | 0.0042 (5) | 0.0059 (5) |
C3 | 0.0207 (6) | 0.0193 (6) | 0.0206 (6) | 0.0035 (5) | 0.0028 (5) | 0.0056 (5) |
C4 | 0.0235 (6) | 0.0162 (6) | 0.0228 (6) | 0.0048 (5) | 0.0053 (5) | 0.0037 (5) |
C5 | 0.0273 (7) | 0.0471 (9) | 0.0257 (7) | 0.0121 (6) | 0.0035 (6) | 0.0095 (7) |
C6 | 0.0454 (9) | 0.0584 (11) | 0.0255 (8) | 0.0162 (8) | 0.0095 (7) | 0.0144 (7) |
C7 | 0.0398 (9) | 0.0389 (9) | 0.0375 (9) | 0.0084 (7) | 0.0209 (7) | 0.0126 (7) |
C8 | 0.0250 (7) | 0.0377 (8) | 0.0433 (9) | −0.0011 (6) | 0.0105 (6) | 0.0080 (7) |
C9 | 0.0258 (7) | 0.0311 (7) | 0.0268 (7) | −0.0012 (6) | 0.0014 (6) | 0.0035 (6) |
C10 | 0.0217 (6) | 0.0198 (6) | 0.0197 (6) | 0.0033 (5) | 0.0022 (5) | 0.0023 (5) |
C11 | 0.0285 (7) | 0.0229 (7) | 0.0259 (7) | 0.0064 (5) | 0.0090 (5) | 0.0056 (5) |
C12 | 0.0346 (8) | 0.0218 (7) | 0.0345 (8) | 0.0089 (6) | 0.0100 (6) | 0.0077 (6) |
C13 | 0.0342 (7) | 0.0225 (7) | 0.0306 (8) | 0.0016 (6) | 0.0057 (6) | 0.0095 (6) |
C14 | 0.0349 (8) | 0.0300 (8) | 0.0360 (8) | 0.0042 (6) | 0.0166 (6) | 0.0093 (6) |
C15 | 0.0305 (7) | 0.0251 (7) | 0.0351 (8) | 0.0092 (6) | 0.0137 (6) | 0.0070 (6) |
C16 | 0.0212 (6) | 0.0232 (6) | 0.0190 (6) | 0.0062 (5) | 0.0068 (5) | 0.0087 (5) |
C17 | 0.0270 (7) | 0.0213 (6) | 0.0227 (7) | 0.0051 (5) | 0.0055 (5) | 0.0064 (5) |
C18 | 0.0252 (7) | 0.0292 (7) | 0.0233 (7) | 0.0024 (5) | 0.0025 (5) | 0.0072 (6) |
C19 | 0.0240 (7) | 0.0330 (7) | 0.0224 (7) | 0.0093 (5) | 0.0078 (5) | 0.0123 (6) |
C20 | 0.0304 (7) | 0.0232 (7) | 0.0320 (8) | 0.0095 (5) | 0.0087 (6) | 0.0131 (6) |
C21 | 0.0260 (7) | 0.0218 (7) | 0.0300 (7) | 0.0026 (5) | 0.0052 (6) | 0.0079 (5) |
C22 | 0.0273 (8) | 0.0437 (9) | 0.0318 (8) | 0.0108 (7) | 0.0044 (6) | 0.0166 (7) |
C23 | 0.0243 (6) | 0.0185 (6) | 0.0183 (6) | 0.0044 (5) | 0.0066 (5) | 0.0070 (5) |
C24 | 0.0220 (6) | 0.0224 (6) | 0.0209 (6) | 0.0011 (5) | 0.0037 (5) | 0.0049 (5) |
C25 | 0.0212 (6) | 0.0270 (7) | 0.0244 (7) | 0.0069 (5) | 0.0068 (5) | 0.0084 (5) |
C26 | 0.0287 (7) | 0.0217 (6) | 0.0188 (6) | 0.0058 (5) | 0.0088 (5) | 0.0057 (5) |
C27 | 0.0269 (7) | 0.0222 (6) | 0.0196 (6) | 0.0000 (5) | 0.0025 (5) | 0.0047 (5) |
C28 | 0.0205 (6) | 0.0243 (6) | 0.0226 (6) | 0.0040 (5) | 0.0031 (5) | 0.0092 (5) |
C29 | 0.0381 (8) | 0.0249 (7) | 0.0323 (8) | 0.0083 (6) | 0.0112 (7) | 0.0021 (6) |
S1—C3 | 1.7689 (13) | C14—H14 | 0.9300 |
S1—C23 | 1.7776 (13) | C15—H15 | 0.9300 |
S2—C3 | 1.7572 (13) | C16—C21 | 1.3892 (19) |
S2—C16 | 1.7781 (13) | C16—C17 | 1.3919 (19) |
N—C1 | 1.2959 (17) | C17—C18 | 1.3890 (19) |
N—C2 | 1.3869 (17) | C17—H17 | 0.9300 |
C1—C10 | 1.4851 (18) | C18—C19 | 1.393 (2) |
C1—C4 | 1.4955 (18) | C18—H18 | 0.9300 |
C2—C3 | 1.3515 (18) | C19—C20 | 1.388 (2) |
C2—H2 | 0.983 (15) | C19—C22 | 1.5098 (19) |
C4—C9 | 1.3904 (19) | C20—C21 | 1.3873 (19) |
C4—C5 | 1.3902 (19) | C20—H20 | 0.9300 |
C5—C6 | 1.387 (2) | C21—H21 | 0.9300 |
C5—H5 | 0.9300 | C22—H221 | 0.93 (2) |
C6—C7 | 1.378 (2) | C22—H222 | 0.97 (2) |
C6—H6 | 0.9300 | C22—H223 | 0.96 (3) |
C7—C8 | 1.373 (2) | C23—C24 | 1.3912 (18) |
C7—H7 | 0.9300 | C23—C28 | 1.3936 (18) |
C8—C9 | 1.385 (2) | C24—C25 | 1.3843 (19) |
C8—H8 | 0.9300 | C24—H24 | 0.9300 |
C9—H9 | 0.9300 | C25—C26 | 1.3941 (19) |
C10—C11 | 1.3934 (18) | C25—H25 | 0.9300 |
C10—C15 | 1.3974 (19) | C26—C27 | 1.3942 (19) |
C11—C12 | 1.3927 (19) | C26—C29 | 1.5062 (19) |
C11—H11 | 0.9300 | C27—C28 | 1.3864 (19) |
C12—C13 | 1.381 (2) | C27—H27 | 0.9300 |
C12—H12 | 0.9300 | C28—H28 | 0.9300 |
C13—C14 | 1.384 (2) | C29—H291 | 0.95 (2) |
C13—H13 | 0.9300 | C29—H292 | 0.97 (2) |
C14—C15 | 1.382 (2) | C29—H293 | 0.95 (2) |
C3—S1—C23 | 104.31 (6) | C21—C16—C17 | 119.68 (12) |
C3—S2—C16 | 103.68 (6) | C21—C16—S2 | 116.76 (10) |
C1—N—C2 | 121.26 (12) | C17—C16—S2 | 123.46 (10) |
N—C1—C10 | 117.10 (12) | C18—C17—C16 | 119.57 (12) |
N—C1—C4 | 123.91 (12) | C18—C17—H17 | 120.2 |
C10—C1—C4 | 118.98 (11) | C16—C17—H17 | 120.2 |
C3—C2—N | 119.27 (12) | C17—C18—C19 | 121.53 (13) |
C3—C2—H2 | 119.6 (9) | C17—C18—H18 | 119.2 |
N—C2—H2 | 121.2 (9) | C19—C18—H18 | 119.2 |
C2—C3—S2 | 117.32 (10) | C20—C19—C18 | 117.82 (12) |
C2—C3—S1 | 119.54 (10) | C20—C19—C22 | 120.64 (13) |
S2—C3—S1 | 123.10 (8) | C18—C19—C22 | 121.53 (14) |
C9—C4—C5 | 118.69 (13) | C21—C20—C19 | 121.59 (13) |
C9—C4—C1 | 120.58 (12) | C21—C20—H20 | 119.2 |
C5—C4—C1 | 120.73 (12) | C19—C20—H20 | 119.2 |
C6—C5—C4 | 120.46 (14) | C20—C21—C16 | 119.80 (13) |
C6—C5—H5 | 119.8 | C20—C21—H21 | 120.1 |
C4—C5—H5 | 119.8 | C16—C21—H21 | 120.1 |
C7—C6—C5 | 120.06 (15) | C19—C22—H221 | 111.6 (13) |
C7—C6—H6 | 120.0 | C19—C22—H222 | 111.9 (13) |
C5—C6—H6 | 120.0 | H221—C22—H222 | 105.5 (18) |
C8—C7—C6 | 120.05 (14) | C19—C22—H223 | 111.4 (14) |
C8—C7—H7 | 120.0 | H221—C22—H223 | 109.5 (19) |
C6—C7—H7 | 120.0 | H222—C22—H223 | 106.6 (19) |
C7—C8—C9 | 120.25 (14) | C24—C23—C28 | 119.57 (12) |
C7—C8—H8 | 119.9 | C24—C23—S1 | 118.78 (10) |
C9—C8—H8 | 119.9 | C28—C23—S1 | 121.44 (10) |
C8—C9—C4 | 120.48 (14) | C25—C24—C23 | 119.96 (12) |
C8—C9—H9 | 119.8 | C25—C24—H24 | 120.0 |
C4—C9—H9 | 119.8 | C23—C24—H24 | 120.0 |
C11—C10—C15 | 118.28 (12) | C24—C25—C26 | 121.25 (12) |
C11—C10—C1 | 122.05 (12) | C24—C25—H25 | 119.4 |
C15—C10—C1 | 119.66 (12) | C26—C25—H25 | 119.4 |
C12—C11—C10 | 120.62 (13) | C27—C26—C25 | 118.15 (12) |
C12—C11—H11 | 119.7 | C27—C26—C29 | 120.85 (13) |
C10—C11—H11 | 119.7 | C25—C26—C29 | 121.01 (13) |
C13—C12—C11 | 120.18 (13) | C28—C27—C26 | 121.20 (12) |
C13—C12—H12 | 119.9 | C28—C27—H27 | 119.4 |
C11—C12—H12 | 119.9 | C26—C27—H27 | 119.4 |
C12—C13—C14 | 119.75 (13) | C27—C28—C23 | 119.84 (12) |
C12—C13—H13 | 120.1 | C27—C28—H28 | 120.1 |
C14—C13—H13 | 120.1 | C23—C28—H28 | 120.1 |
C15—C14—C13 | 120.26 (14) | C26—C29—H291 | 110.6 (12) |
C15—C14—H14 | 119.9 | C26—C29—H292 | 112.6 (13) |
C13—C14—H14 | 119.9 | H291—C29—H292 | 106.3 (17) |
C14—C15—C10 | 120.89 (13) | C26—C29—H293 | 110.2 (14) |
C14—C15—H15 | 119.6 | H291—C29—H293 | 106.8 (18) |
C10—C15—H15 | 119.6 | H292—C29—H293 | 110.1 (18) |
Experimental details
Crystal data | |
Chemical formula | C29H25NS2 |
Mr | 451.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 6.934 (1), 12.3009 (2), 14.4247 (3) |
α, β, γ (°) | 101.7371 (8), 98.2522 (7), 93.040 (1) |
V (Å3) | 1187.90 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.2 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7710, 5329, 4695 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.089, 1.04 |
No. of reflections | 5329 |
No. of parameters | 317 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.25 |
Computer programs: KappaCCD Server Software (Nonius, 1997), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).
Acknowledgements
CNRS is acknowledged for financial support
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541–1544. CrossRef Google Scholar
Jacquot, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2000). Eur. J. Org. Chem. pp. 1235–1239. CrossRef Google Scholar
Jacquot-Rousseau, S., Khatyr, A., Schmitt, G., Knorr, M., Kubicki, M. M. & Blacque, O. (2005). Inorg. Chem. Commun. 8, 610–613. Web of Science CSD CrossRef CAS Google Scholar
Jacquot-Rousseau, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2002). J. Chem. Res. (S), pp. 151–152. Google Scholar
Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Tanimoto, S., Taniyasu, R., Takahashi, T., Miyake, T. & Okano, M. (1976). Bull. Chem. Soc. Jpn, 49, 1931–1936. CrossRef CAS Web of Science Google Scholar
Truce, W. E. & Boudakian, M. M. (1956). J. Am. Chem. Soc. 78, 2748–2751. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The investigations of Truce and Boudakian on the reactivity of 1,1-dichloroethylene (1) towards an excess of sodium p-toluenethiolate have shown that this reaction affords exclusively cis-1,2-bis-(p-tolylmercapto) ethane (2). The intermediacy of an alkyne species ArSCCH has been suggested to rationalize this interesting rearrangement reaction which implies some addition–elimination sequences (Truce & Boudakian, 1956). Another research group has later confirmed these findings (Tanimoto et al., 1976) (Fig. 2). In the context of our interest in developing novel π-conjugated dithioether compounds as ligands for coordination chemistry, we have recently reported on the synthesis and crystal structure of [(i-PrS)2C=C(H)—N=CPh2] (4a), obtained by reaction of an excess of sodium i-propylthiolate with 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene (3) in DMF as solvent (Jacquot-Rousseau et al., 2005). In the light of the results mentioned above, we were intrigued whether the reaction of (3) (Jacquot et al., 1999) with sodium p-toluenethiolate would lead to [(p-tolylS)2C=C(H)—N=CPh2] (4 b) or to an rearranged product bearing the two –S-p-tolyl substituents on two different carbon atoms, similar to the case of olefin (2) (Fig. 3).
The molecular structure of (4 b) is shown in Fig. 1. The transoid conformation of the azabutadiene chain found in precursor (3) and in the S-i-propyl derivative (4a) is also observed in the crystal structure of (4 b). In contrast to compound (2), both the S-p-tolyl substituents are attached to the same C(3) atom.
One may expect that one of the two phenyl groups bound to C(1) makes part of the phenyl/azadiene chain π-conjugation. In fact, a dihedral angle between C10–C15 phenyl plane and that of azadiene chain C1—N—C2—C3 is equal only to 5.1 (2)°. Note that these dihedral angles amount to 28.7 (1)° in precursor (3) and 38.8 (3)° in (4a). An obvious question arises: the reported values of dihedral angles are due to the electronic structures of compounds (3) and (4) or to the packing in the crystals? This problem requires some calculations on the electronic structure of (4 b) and will be separately treated elsewhere.