organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o393-o394

L-Lysinium tri­fluoro­acetate

aState Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: sunzhihua@icm.sdu.edu.cn

(Received 15 November 2007; accepted 31 December 2007; online 9 January 2008)

Ions of the title compound, C6H15N2O2+·C2F3O2, a new organic nonlinear optical crystal, are linked by N—H⋯O hydrogen-bonding inter­actions. Both the amino groups of the L-lysinium cation are protonated. A three-dimensional network of hydrogen bonds is observed, forming a closed ring. Inter­molecular N—H⋯O hydrogen bonds involving L-lysinium cations and trifluoro­acetate anions link the ions into extended chains which run parallel to the [010] direction. The F atoms of the trifluoro­acetate anion are disordered over two sites with site occupancies of 0.423 (18) and 0.577 (18). The asymmetric unit consists of two cations and two anions.

Related literature

For related literature, see: Babu, Sethuraman, Gopalakrishnan & Ramasamy (2006[Babu, R. R., Sethuraman, K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 297, 356-360.]); Babu, Sethuraman, Vijayan et al. (2006[Babu, R. R., Sethuraman, K., Vijayan, N., Bhagavannarayana, G., Gopala­krishnan, R. & Ramasamy, P. (2006). Cryst. Res. Technol. 41, 906-910.]); Chandra et al. (1998[Chandra, N. R., Prabu, M. M., Venkatraman, J., Suresh, S. & Vijayan, M. (1998). Acta Cryst. B54, 257-263.]); Debrus et al. (2005[Debrus, S., Marchewka, M. K., Baran, J., Drozd, M., Czopnik, R., Pietraszko, A. & Ratajczak, H. (2005). J. Solid State Chem. 178, 2880-2896.]); Drozd & Marchewka (2006[Drozd, M. & Marchewka, M. K. (2006). Spectrochim. Acta A, 64, 6-23.]); Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.]); Marchewka et al. (2003[Marchewka, M. K., Debrus, S. & Ratajczak, H. (2003). Cryst. Growth Des. 3, 587-592.]); Prasad & Vijayan (1993[Prasad, G. S. & Vijayan, M. (1993). Acta Cryst. B49, 348-356.]); Pratap et al. (2000[Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690-696.]); Suresh et al. (1994[Suresh, S., Prasad, G. S. & Vijayan, M. (1994). Int. J. Pept. Protein Res. 43, 139-146.]); Xu et al. (1983[Xu, D., Jiang, M. H. & Tan, Z. (1983). Acta Chim. Sinica, 2, 230-233.]); Yokotani et al. (1989[Yokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692-2693.]).

[Scheme 1]

Experimental

Crystal data
  • C6H15N2O2+·C2F3O2

  • Mr = 260.22

  • Monoclinic, P 21

  • a = 5.6985 (2) Å

  • b = 23.5430 (8) Å

  • c = 8.5007 (3) Å

  • β = 91.630 (2)°

  • V = 1139.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 (2) K

  • 0.35 × 0.29 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.95, Tmax = 0.98

  • 8405 measured reflections

  • 2674 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.06

  • 2674 reflections

  • 340 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4E⋯O7i 0.89 1.96 2.838 (4) 168
N4—H4D⋯O1i 0.89 2.63 3.080 (4) 112
N4—H4D⋯F2i 0.89 2.54 3.079 (4) 120
N4—H4D⋯O3i 0.89 2.05 2.842 (4) 147
N3—H3E⋯O8ii 0.89 1.98 2.866 (4) 172
N3—H3D⋯O4iii 0.89 1.98 2.864 (4) 171
N3—H3C⋯O6iv 0.89 2.40 3.148 (4) 142
N3—H3C⋯O5iv 0.89 2.23 3.064 (4) 157
N2—H2E⋯O6v 0.89 1.97 2.853 (4) 174
N2—H2D⋯O3vi 0.89 1.94 2.800 (4) 163
N2—H2C⋯O4vii 0.89 2.12 2.934 (4) 151
N1—H1E⋯O5iv 0.89 1.99 2.870 (4) 172
N1—H1C⋯O7i 0.89 2.52 3.212 (4) 136
N1—H1C⋯O8i 0.89 2.04 2.901 (4) 163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x-1, y, z; (v) x-1, y, z+1; (vi) [-x, y-{\script{1\over 2}}, -z+2]; (vii) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Over the past two decades, the discovery of promising optical properties in L-arginine phosphate monohydrate (LAP) and its deuterated complex has stimulated a strong interest in the nonlinear optcial (NLO) crystals of l-larginine family and other amino acids. (Xu et al., 1983; Yokotani et al., 1989). As one of the three diamino carboxylic acids, l-lysine reacted with other carboxylic acids such as formic, acetic, succinic, glycolic, oxalic and maleic acids has also been studied for its intrinsic polarities (Prasad & Vijayan, 1993; Suresh et al., 1994; Marchewka et al., 2003; Chandra et al., 1998; Pratap et al., 2000). Several NLO crystals composed of l-lysine have been grown and characterized (Babu, Sethuraman, Gopalakrishnan & Ramasamy, 2006; Debrus et al., 2005; Babu, Sethuraman, Vijayan, Bhagavannarayana, Gopalakrishnan & Ramasamy, 2006). Duo to the low UV cutoff (210 nm at 0.1%, v/v) and effectiveness as an ion-pairing agent, trifluoroacetic acid attracts our attention. Hence, it may be useful to synthesize the amino acid compounds with trifluoroacetic acid and investigate their properties.

In the crystal structure of the title compound, (I) (Fig. 1), both the amino groups in the L-lysine+ cations are protonated. All the C—N bonds (Table 1) are typical and bond lengths are somewhat shorter than the respective value of C—NH3+ (cal. 1.490 A) of L-lysine cations (Drozd & Marchewka, 2006). The C—F bond lengths of C16 are shorter than respective values of C13 due to the positional disorder of fluorin atoms F4, F5 and F6 of trifluoroacetate ion.

The packing of the title compound is shown in Fig. 2. A three-dimensional network of hydrogen bonds connects l-lysine cations and trifluoroacetate anions together. The hydrogen bonds of N—H···O are dominative among the negatively charged carboxylate groups, positively charged protonated amino groups. The introduction of trifluoroacetate anions optimizes the orientation of L-lysine through interactions among carboxyl groups and amino groups.

The second harmonic geneartion (SHG) of crystals of (I) was studied by the powder SHG method (Kurtz & Perry, 1968). The green light beam was observed, which confirms its non-centrosymmetric structure.

Related literature top

For related literature, see: Babu, Sethuraman, Gopalakrishnan & Ramasamy (2006); Babu, Sethuraman, Vijayan, Bhagavannarayana, Gopalakrishnan & Ramasamy (2006); Chandra et al. (1998); Debrus et al. (2005); Drozd & Marchewka (2006); Kurtz & Perry (1968); Marchewka et al. (2003); Prasad & Vijayan (1993); Pratap et al. (2000); Suresh et al. (1994); Xu et al. (1983); Yokotani et al. (1989).

Experimental top

High optical-quality crystals used for X-ray analysis were obtained from an aqueous solution of L-lysine and trifluoroacetate acid, mixed in 1:1 molar ratio, after several days at 313 K.

Refinement top

The Flack parameter was inconclusive due to the lack of significant anomalous scatterer. The F atoms of the CF3 group are probably disordered.

All atoms of the disordered group were refined with restrained bond distance and displacemens to improve convergence. Occupancy of both positions of disordered group was refined and converged to 0.577 (18) and 0.423 (18) respectively. H atoms attached to C and N atoms were positioned geometrically and treated as riding, with N—H = 0.89%A and C—H = 0.97 or 0.98%A, and their isotropic displacement parameters were set to 1.2 times the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
L-Lysinium trifluoroacetate top
Crystal data top
C6H15N2O2+·C2F3O2F(000) = 544
Mr = 260.22Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3919 reflections
a = 5.6985 (2) Åθ = 3.0–27.3°
b = 23.5430 (8) ŵ = 0.15 mm1
c = 8.5007 (3) ÅT = 293 K
β = 91.630 (2)°Prism, colourless
V = 1139.99 (7) Å30.35 × 0.29 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 57
Tmin = 0.95, Tmax = 0.98k = 3025
8405 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3205P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2674 reflectionsΔρmax = 0.44 e Å3
340 parametersΔρmin = 0.23 e Å3
43 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C6H15N2O2+·C2F3O2V = 1139.99 (7) Å3
Mr = 260.22Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.6985 (2) ŵ = 0.15 mm1
b = 23.5430 (8) ÅT = 293 K
c = 8.5007 (3) Å0.35 × 0.29 × 0.12 mm
β = 91.630 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2674 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2470 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.98Rint = 0.023
8405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04443 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2674 reflectionsΔρmin = 0.23 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2035 (7)0.19654 (15)0.9377 (4)0.0386 (7)
H1A0.04170.20880.92360.046*
H1B0.20780.15570.92330.046*
C20.3517 (7)0.22473 (15)0.8138 (4)0.0394 (8)
H2A0.28680.21490.71060.047*
H2B0.50910.20910.82180.047*
C30.3684 (6)0.28929 (15)0.8256 (4)0.0340 (7)
H3A0.43390.29940.92840.041*
H3B0.47530.30290.74730.041*
C40.1328 (6)0.31898 (14)0.8015 (4)0.0320 (7)
H4A0.02100.30200.87150.038*
H4B0.07630.31240.69440.038*
C50.1405 (5)0.38324 (12)0.8314 (3)0.0260 (6)
H50.19260.38980.94080.031*
C60.1062 (5)0.40846 (13)0.8071 (4)0.0274 (6)
C70.8434 (7)0.56316 (15)0.4189 (4)0.0417 (8)
H7A1.00150.55120.39550.050*
H7B0.83240.60360.39880.050*
C80.6728 (7)0.53266 (16)0.3112 (4)0.0415 (8)
H8A0.70970.54180.20340.050*
H8B0.51640.54700.32960.050*
C90.6694 (6)0.46783 (15)0.3289 (4)0.0348 (7)
H9A0.61870.45840.43370.042*
H9B0.55520.45220.25400.042*
C100.9055 (6)0.44005 (14)0.3031 (4)0.0337 (7)
H10A1.02150.45720.37410.040*
H10B0.95230.44780.19640.040*
C110.9066 (5)0.37617 (13)0.3288 (3)0.0266 (6)
H110.85740.36840.43620.032*
C121.1556 (5)0.35209 (13)0.3097 (4)0.0278 (6)
C130.2120 (7)0.5547 (2)0.9656 (5)0.0490 (9)
C140.3551 (6)0.56626 (15)0.8184 (5)0.0399 (8)
C150.1624 (6)0.69327 (14)0.6885 (4)0.0332 (7)
C160.3002 (6)0.69936 (14)0.5366 (4)0.0463 (9)
F10.2737 (7)0.50496 (14)1.0285 (4)0.0803 (10)
F20.0167 (5)0.5514 (2)0.9324 (3)0.0847 (11)
F30.2391 (8)0.59289 (17)1.0789 (4)0.0907 (12)
N10.3086 (4)0.41146 (12)0.7262 (3)0.0286 (5)
H1C0.45470.40540.76220.043*
H1D0.28020.44860.72380.043*
H1E0.29170.39730.62950.043*
N20.2873 (5)0.21051 (13)1.0996 (3)0.0344 (6)
H2C0.44180.20521.10770.052*
H2D0.21620.18811.16780.052*
H2E0.25440.24661.12040.052*
N30.7381 (4)0.34760 (12)0.2158 (3)0.0299 (5)
H3C0.59180.35350.24610.045*
H3D0.76720.31050.21440.045*
H3E0.75500.36190.11990.045*
N40.8017 (6)0.55253 (14)0.5879 (4)0.0403 (7)
H4C0.65110.55870.60720.060*
H4D0.89060.57590.64650.060*
H4E0.83830.51670.61130.060*
O10.3110 (5)0.53384 (12)0.7075 (4)0.0461 (6)
O20.4978 (6)0.60529 (15)0.8282 (5)0.0703 (10)
O30.0036 (5)0.65772 (12)0.6844 (4)0.0475 (7)
O40.2218 (5)0.72643 (11)0.7963 (3)0.0406 (6)
O51.3033 (4)0.36431 (13)0.4147 (3)0.0441 (6)
O61.1940 (4)0.32512 (12)0.1873 (3)0.0418 (6)
O70.1433 (4)0.43812 (12)0.6875 (3)0.0411 (6)
O80.2560 (4)0.39525 (12)0.9057 (3)0.0401 (6)
F40.240 (3)0.6636 (6)0.4230 (12)0.090 (4)0.423 (18)
F50.5288 (10)0.6952 (6)0.5549 (13)0.069 (3)0.423 (18)
F60.263 (2)0.7512 (4)0.4766 (16)0.084 (3)0.423 (18)
F4'0.3461 (18)0.6491 (2)0.4707 (10)0.078 (2)0.577 (18)
F5'0.5098 (11)0.7221 (5)0.5632 (9)0.074 (2)0.577 (18)
F6'0.1885 (16)0.7293 (6)0.4287 (9)0.092 (3)0.577 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0265 (16)0.0408 (18)0.0012 (14)0.0043 (15)0.0011 (14)
C20.054 (2)0.0284 (17)0.0366 (17)0.0102 (15)0.0107 (15)0.0013 (13)
C30.0359 (17)0.0298 (16)0.0368 (16)0.0041 (13)0.0077 (13)0.0052 (13)
C40.0374 (17)0.0214 (14)0.0371 (16)0.0017 (12)0.0037 (12)0.0021 (12)
C50.0241 (13)0.0260 (15)0.0277 (13)0.0013 (10)0.0030 (10)0.0025 (11)
C60.0241 (13)0.0240 (14)0.0337 (15)0.0008 (10)0.0033 (11)0.0007 (12)
C70.054 (2)0.0270 (17)0.0443 (19)0.0018 (15)0.0063 (15)0.0009 (14)
C80.056 (2)0.0327 (18)0.0352 (17)0.0103 (16)0.0063 (15)0.0015 (13)
C90.0388 (17)0.0270 (15)0.0382 (16)0.0024 (13)0.0057 (13)0.0033 (13)
C100.0402 (17)0.0253 (16)0.0358 (16)0.0003 (13)0.0046 (13)0.0020 (13)
C110.0270 (13)0.0271 (15)0.0260 (13)0.0023 (11)0.0037 (10)0.0009 (11)
C120.0258 (13)0.0253 (14)0.0325 (15)0.0023 (11)0.0054 (11)0.0018 (11)
C130.052 (2)0.050 (2)0.044 (2)0.0021 (18)0.0073 (16)0.0040 (18)
C140.0298 (16)0.0286 (18)0.061 (2)0.0016 (13)0.0010 (14)0.0052 (16)
C150.0340 (16)0.0242 (15)0.0417 (18)0.0024 (13)0.0043 (13)0.0025 (13)
C160.050 (2)0.050 (2)0.0390 (19)0.0059 (17)0.0059 (16)0.0046 (17)
F10.111 (3)0.065 (2)0.0658 (19)0.0023 (18)0.0032 (17)0.0254 (16)
F20.0436 (13)0.150 (3)0.0610 (16)0.0034 (19)0.0068 (12)0.009 (2)
F30.116 (3)0.095 (3)0.0607 (18)0.012 (2)0.0090 (19)0.0309 (19)
N10.0241 (11)0.0268 (13)0.0349 (13)0.0002 (10)0.0007 (10)0.0027 (10)
N20.0363 (15)0.0318 (15)0.0356 (14)0.0077 (11)0.0082 (11)0.0073 (11)
N30.0240 (11)0.0253 (12)0.0404 (14)0.0009 (10)0.0021 (10)0.0007 (10)
N40.0505 (17)0.0314 (15)0.0386 (15)0.0006 (13)0.0038 (12)0.0031 (12)
O10.0524 (15)0.0326 (14)0.0534 (16)0.0008 (11)0.0057 (12)0.0023 (12)
O20.0528 (18)0.0406 (17)0.117 (3)0.0165 (14)0.0025 (19)0.0017 (19)
O30.0430 (14)0.0419 (15)0.0583 (16)0.0118 (11)0.0129 (12)0.0149 (13)
O40.0426 (13)0.0324 (13)0.0471 (14)0.0041 (10)0.0063 (11)0.0083 (11)
O50.0300 (12)0.0520 (16)0.0497 (15)0.0023 (11)0.0063 (10)0.0119 (12)
O60.0397 (13)0.0486 (15)0.0372 (12)0.0141 (11)0.0048 (10)0.0094 (11)
O70.0385 (13)0.0448 (15)0.0396 (13)0.0084 (11)0.0048 (10)0.0129 (11)
O80.0269 (11)0.0480 (15)0.0454 (13)0.0013 (10)0.0009 (9)0.0113 (12)
F40.096 (5)0.103 (6)0.070 (5)0.027 (4)0.016 (4)0.021 (4)
F50.055 (4)0.088 (5)0.066 (4)0.017 (3)0.016 (3)0.017 (4)
F60.102 (5)0.078 (5)0.071 (5)0.002 (4)0.016 (4)0.030 (4)
F4'0.100 (4)0.075 (3)0.063 (3)0.020 (3)0.037 (3)0.010 (3)
F5'0.061 (3)0.094 (5)0.068 (3)0.027 (3)0.023 (2)0.007 (3)
F6'0.095 (4)0.117 (5)0.064 (3)0.023 (4)0.004 (3)0.036 (3)
Geometric parameters (Å, º) top
C1—N21.481 (5)C11—C121.541 (4)
C1—C21.521 (5)C11—H110.9800
C1—H1A0.9700C12—O51.243 (4)
C1—H1B0.9700C12—O61.244 (4)
C2—C31.526 (5)C13—F31.324 (5)
C2—H2A0.9700C13—F21.328 (5)
C2—H2B0.9700C13—F11.330 (5)
C3—C41.522 (5)C13—C141.537 (6)
C3—H3A0.9700C14—O21.228 (5)
C3—H3B0.9700C14—O11.234 (5)
C4—C51.534 (4)C15—O31.232 (4)
C4—H4A0.9700C15—O41.243 (4)
C4—H4B0.9700C15—C161.537 (5)
C5—N11.486 (4)C16—F6'1.308 (5)
C5—C61.535 (4)C16—F51.312 (5)
C5—H50.9800C16—F41.319 (5)
C6—O71.247 (4)C16—F5'1.323 (5)
C6—O81.253 (4)C16—F61.337 (5)
C7—N41.484 (5)C16—F4'1.338 (5)
C7—C81.500 (5)N1—H1C0.8900
C7—H7A0.9700N1—H1D0.8900
C7—H7B0.9700N1—H1E0.8900
C8—C91.534 (5)N2—H2C0.8900
C8—H8A0.9700N2—H2D0.8900
C8—H8B0.9700N2—H2E0.8900
C9—C101.518 (5)N3—H3C0.8900
C9—H9A0.9700N3—H3D0.8900
C9—H9B0.9700N3—H3E0.8900
C10—C111.520 (5)N4—H4C0.8900
C10—H10A0.9700N4—H4D0.8900
C10—H10B0.9700N4—H4E0.8900
C11—N31.498 (4)
N2—C1—C2112.0 (3)C12—C11—H11108.6
N2—C1—H1A109.2O5—C12—O6126.0 (3)
C2—C1—H1A109.2O5—C12—C11116.5 (3)
N2—C1—H1B109.2O6—C12—C11117.4 (3)
C2—C1—H1B109.2F3—C13—F2106.7 (4)
H1A—C1—H1B107.9F3—C13—F1106.3 (4)
C1—C2—C3115.1 (3)F2—C13—F1106.3 (4)
C1—C2—H2A108.5F3—C13—C14114.7 (4)
C3—C2—H2A108.5F2—C13—C14112.2 (3)
C1—C2—H2B108.5F1—C13—C14110.0 (4)
C3—C2—H2B108.5O2—C14—O1129.4 (4)
H2A—C2—H2B107.5O2—C14—C13116.3 (4)
C4—C3—C2113.3 (3)O1—C14—C13114.3 (3)
C4—C3—H3A108.9O3—C15—O4129.2 (3)
C2—C3—H3A108.9O3—C15—C16115.6 (3)
C4—C3—H3B108.9O4—C15—C16115.2 (3)
C2—C3—H3B108.9F6'—C16—F5125.8 (6)
H3A—C3—H3B107.7F6'—C16—F473.7 (7)
C3—C4—C5114.2 (3)F5—C16—F4106.1 (7)
C3—C4—H4A108.7F6'—C16—F5'108.7 (6)
C5—C4—H4A108.7F5—C16—F5'28.5 (5)
C3—C4—H4B108.7F4—C16—F5'126.8 (6)
C5—C4—H4B108.7F6'—C16—F634.0 (5)
H4A—C4—H4B107.6F5—C16—F6105.1 (7)
N1—C5—C4110.9 (2)F4—C16—F6105.5 (8)
N1—C5—C6110.5 (2)F5'—C16—F680.1 (7)
C4—C5—C6109.7 (2)F6'—C16—F4'106.3 (6)
N1—C5—H5108.6F5—C16—F4'77.2 (6)
C4—C5—H5108.6F4—C16—F4'34.9 (6)
C6—C5—H5108.6F5'—C16—F4'104.1 (6)
O7—C6—O8125.6 (3)F6—C16—F4'132.7 (6)
O7—C6—C5117.4 (3)F6'—C16—C15112.9 (4)
O8—C6—C5116.9 (3)F5—C16—C15115.0 (5)
N4—C7—C8113.0 (3)F4—C16—C15115.2 (5)
N4—C7—H7A109.0F5'—C16—C15112.0 (4)
C8—C7—H7A109.0F6—C16—C15109.0 (5)
N4—C7—H7B109.0F4'—C16—C15112.3 (4)
C8—C7—H7B109.0C5—N1—H1C109.5
H7A—C7—H7B107.8C5—N1—H1D109.5
C7—C8—C9115.2 (3)H1C—N1—H1D109.5
C7—C8—H8A108.5C5—N1—H1E109.5
C9—C8—H8A108.5H1C—N1—H1E109.5
C7—C8—H8B108.5H1D—N1—H1E109.5
C9—C8—H8B108.5C1—N2—H2C109.5
H8A—C8—H8B107.5C1—N2—H2D109.5
C10—C9—C8113.6 (3)H2C—N2—H2D109.5
C10—C9—H9A108.8C1—N2—H2E109.5
C8—C9—H9A108.8H2C—N2—H2E109.5
C10—C9—H9B108.8H2D—N2—H2E109.5
C8—C9—H9B108.8C11—N3—H3C109.5
H9A—C9—H9B107.7C11—N3—H3D109.5
C9—C10—C11113.9 (3)H3C—N3—H3D109.5
C9—C10—H10A108.8C11—N3—H3E109.5
C11—C10—H10A108.8H3C—N3—H3E109.5
C9—C10—H10B108.8H3D—N3—H3E109.5
C11—C10—H10B108.8C7—N4—H4C109.5
H10A—C10—H10B107.7C7—N4—H4D109.5
N3—C11—C10110.6 (3)H4C—N4—H4D109.5
N3—C11—C12110.0 (2)C7—N4—H4E109.5
C10—C11—C12110.4 (3)H4C—N4—H4E109.5
N3—C11—H11108.6H4D—N4—H4E109.5
C10—C11—H11108.6
N2—C1—C2—C356.8 (4)F3—C13—C14—O28.0 (5)
C1—C2—C3—C462.9 (4)F2—C13—C14—O2130.0 (4)
C2—C3—C4—C5173.4 (3)F1—C13—C14—O2111.8 (4)
C3—C4—C5—N158.8 (3)F3—C13—C14—O1173.0 (4)
C3—C4—C5—C6178.8 (3)F2—C13—C14—O151.0 (5)
N1—C5—C6—O714.6 (4)F1—C13—C14—O167.2 (4)
C4—C5—C6—O7108.0 (3)O3—C15—C16—F6'78.6 (8)
N1—C5—C6—O8168.6 (3)O4—C15—C16—F6'98.9 (8)
C4—C5—C6—O868.8 (4)O3—C15—C16—F5127.4 (8)
N4—C7—C8—C958.7 (4)O4—C15—C16—F555.0 (9)
C7—C8—C9—C1058.1 (4)O3—C15—C16—F43.5 (11)
C8—C9—C10—C11177.0 (3)O4—C15—C16—F4178.9 (10)
C9—C10—C11—N361.2 (3)O3—C15—C16—F5'158.3 (7)
C9—C10—C11—C12176.7 (3)O4—C15—C16—F5'24.1 (8)
N3—C11—C12—O5167.2 (3)O3—C15—C16—F6114.9 (9)
C10—C11—C12—O570.4 (4)O4—C15—C16—F662.7 (9)
N3—C11—C12—O616.8 (4)O3—C15—C16—F4'41.6 (7)
C10—C11—C12—O6105.6 (3)O4—C15—C16—F4'140.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4E···O7i0.891.962.838 (4)168
N4—H4D···O1i0.892.633.080 (4)112
N4—H4D···F2i0.892.543.079 (4)120
N4—H4D···O3i0.892.052.842 (4)147
N3—H3E···O8ii0.891.982.866 (4)172
N3—H3D···O4iii0.891.982.864 (4)171
N3—H3C···O6iv0.892.403.148 (4)142
N3—H3C···O5iv0.892.233.064 (4)157
N2—H2E···O6v0.891.972.853 (4)174
N2—H2D···O3vi0.891.942.800 (4)163
N2—H2C···O4vii0.892.122.934 (4)151
N1—H1E···O5iv0.891.992.870 (4)172
N1—H1C···O7i0.892.523.212 (4)136
N1—H1C···O8i0.892.042.901 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z; (v) x1, y, z+1; (vi) x, y1/2, z+2; (vii) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC6H15N2O2+·C2F3O2
Mr260.22
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.6985 (2), 23.5430 (8), 8.5007 (3)
β (°) 91.630 (2)
V3)1139.99 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.35 × 0.29 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.95, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
8405, 2674, 2470
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.07
No. of reflections2674
No. of parameters340
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—N21.481 (5)C16—F6'1.308 (5)
C5—N11.486 (4)C16—F51.312 (5)
C7—N41.484 (5)C16—F41.319 (5)
C11—N31.498 (4)C16—F5'1.323 (5)
C13—F31.324 (5)C16—F61.337 (5)
C13—F21.328 (5)C16—F4'1.338 (5)
C13—F11.330 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4E···O7i0.891.962.838 (4)167.8
N4—H4D···O1i0.892.633.080 (4)112.3
N4—H4D···F2i0.892.543.079 (4)119.7
N4—H4D···O3i0.892.052.842 (4)146.9
N3—H3E···O8ii0.891.982.866 (4)171.9
N3—H3D···O4iii0.891.982.864 (4)170.9
N3—H3C···O6iv0.892.403.148 (4)141.5
N3—H3C···O5iv0.892.233.064 (4)156.8
N2—H2E···O6v0.891.972.853 (4)174.4
N2—H2D···O3vi0.891.942.800 (4)163.1
N2—H2C···O4vii0.892.122.934 (4)151.3
N1—H1E···O5iv0.891.992.870 (4)171.9
N1—H1C···O7i0.892.523.212 (4)135.5
N1—H1C···O8i0.892.042.901 (4)163.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z; (v) x1, y, z+1; (vi) x, y1/2, z+2; (vii) x+1, y1/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 60608010) and the Foundation for the Authors of National Excellent Doctoral Dissertations of China (grant No. 200539).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBabu, R. R., Sethuraman, K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 297, 356–360.  CAS Google Scholar
First citationBabu, R. R., Sethuraman, K., Vijayan, N., Bhagavannarayana, G., Gopala­krishnan, R. & Ramasamy, P. (2006). Cryst. Res. Technol. 41, 906–910.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationChandra, N. R., Prabu, M. M., Venkatraman, J., Suresh, S. & Vijayan, M. (1998). Acta Cryst. B54, 257–263.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDebrus, S., Marchewka, M. K., Baran, J., Drozd, M., Czopnik, R., Pietraszko, A. & Ratajczak, H. (2005). J. Solid State Chem. 178, 2880–2896.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrozd, M. & Marchewka, M. K. (2006). Spectrochim. Acta A, 64, 6–23.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813.  CrossRef CAS Web of Science Google Scholar
First citationMarchewka, M. K., Debrus, S. & Ratajczak, H. (2003). Cryst. Growth Des. 3, 587–592.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, G. S. & Vijayan, M. (1993). Acta Cryst. B49, 348–356.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSuresh, S., Prasad, G. S. & Vijayan, M. (1994). Int. J. Pept. Protein Res. 43, 139–146.  CrossRef CAS PubMed Web of Science Google Scholar
First citationXu, D., Jiang, M. H. & Tan, Z. (1983). Acta Chim. Sinica, 2, 230–233.  Google Scholar
First citationYokotani, A., Sasaki, T., Yoshida, K. & Nakai, S. (1989). Appl. Phys. Lett. 55, 2692–2693.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o393-o394
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds