organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-5-(tri­fluoro­meth­yl)pyridin-2-amine

aOrdnance Technology Institute, Ordnance Engineering College, Shijiazhuang 050003, People's Republic of China, and bCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: shengtan2007@yahoo.com.cn

(Received 29 October 2007; accepted 17 November 2007; online 11 January 2008)

In the title compound, C6H4ClF3N2, an inter­mediate in the synthesis of the fungicide fluazinam, the F atoms of the trifluoro­methyl group are disordered over two sites in a 0.683 (14):0.317 (14) ratio. In the crystal structure, centrosymmetric dimers arise from pairs of N—H⋯N hydrogen bonds.

Related literature

For related literature, see: Guo et al. (1991[Guo, Z.-J., Miyoshi, H., Komyoji, T., Haga, T. & Fujita, T. (1991). Biochim. Biophys. Acta, 1056, 89-92.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4ClF3N2

  • Mr = 196.56

  • Monoclinic, P 21 /n

  • a = 5.801 (1) Å

  • b = 17.978 (5) Å

  • c = 7.578 (2) Å

  • β = 100.19 (4)°

  • V = 777.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.909

  • 3820 measured reflections

  • 1368 independent reflections

  • 904 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.01

  • 1368 reflections

  • 145 parameters

  • 39 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.89 (2) 2.60 (3) 2.965 (9) 105.3 (19)
N2—H2B⋯N1i 0.89 (3) 2.16 (3) 3.049 (9) 171 (3)
Symmetry code: (i) -x-1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an intermediate in the preparation of fluazinam or 3-chloro-N-[3-chloro-2,6-dinitro- 4-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2-pyridinamine which is a kind of pyridine fungicide (Guo et al., 1991).

The F atoms of the trifluoromethyl group are disordered over two sites in a 0.683 (14):0.317 (14) ratio (Fig. 1). An acute intramolecular N—H···Cl interaction occurs and the packing is consolidated by an N—H···N hydrogen bond (Table 1) resulting in inversion dimers.

Related literature top

For related literature, see: Guo et al. (1991).

Experimental top

A mixture of 2,3-dichloro-5-(trifluoromethyl)pyridine (216 g, 1 mol) and NH~3 (68 g, 4 mol) in ethanol was heated to 50 atm. After 10 h, the reaction was complete, the resulting solid was filtered off and washed with a little cool ethanol. 50 mg of (I) was dissolved in 20 ml e thanol and the solution was kept at room temperature for 10 d; natural evaporation gave colourless blocks of (I).

Refinement top

The N-bound H atoms were located in a difference map and freely refined. The C-bound H atoms were positioned geometrically, with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms). Only one orientation of the –CF3 group is shown. The N—H···Cl interaction is shown as a double-dashed line.
[Figure 2] Fig. 2. The formation of the title compound.
3-Chloro-5-(trifluoromethyl)pyridin-2-amine top
Crystal data top
C6H4ClF3N2F(000) = 392
Mr = 196.56Dx = 1.678 Mg m3
Monoclinic, P21/nMelting point = 145–146 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.801 (1) ÅCell parameters from 1210 reflections
b = 17.978 (5) Åθ = 2.9–25.9°
c = 7.578 (2) ŵ = 0.49 mm1
β = 100.19 (4)°T = 294 K
V = 777.8 (3) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1368 independent reflections
Radiation source: fine-focus sealed tube904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 56
Tmin = 0.893, Tmax = 0.909k = 2120
3820 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3792P]
where P = (Fo2 + 2Fc2)/3
1368 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.22 e Å3
39 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H4ClF3N2V = 777.8 (3) Å3
Mr = 196.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.801 (1) ŵ = 0.49 mm1
b = 17.978 (5) ÅT = 294 K
c = 7.578 (2) Å0.24 × 0.22 × 0.20 mm
β = 100.19 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
904 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.909Rint = 0.054
3820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04939 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
1368 reflectionsΔρmin = 0.18 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.19339 (18)0.59163 (5)0.35440 (14)0.0682 (4)
F10.075 (2)0.2514 (7)0.3252 (15)0.117 (4)0.683 (14)
F20.2861 (13)0.2807 (3)0.1285 (11)0.108 (2)0.683 (14)
F30.4036 (17)0.3071 (3)0.3974 (16)0.131 (4)0.683 (14)
F1'0.078 (4)0.2487 (13)0.256 (3)0.097 (6)0.317 (14)
F2'0.392 (4)0.2973 (9)0.246 (4)0.127 (6)0.317 (14)
F3'0.267 (3)0.3002 (6)0.4870 (18)0.107 (5)0.317 (14)
N10.2580 (5)0.44234 (16)0.1206 (4)0.0537 (8)
N20.2851 (6)0.56838 (18)0.1481 (5)0.0658 (9)
C10.1364 (6)0.3800 (2)0.1569 (5)0.0548 (9)
H10.20720.33550.11450.066*
C20.0859 (6)0.3770 (2)0.2526 (5)0.0540 (9)
C30.1917 (6)0.4434 (2)0.3143 (5)0.0540 (9)
H30.34410.44390.37810.065*
C40.0705 (6)0.50724 (19)0.2804 (4)0.0460 (8)
C50.1582 (6)0.50666 (18)0.1823 (4)0.0468 (9)
C60.2091 (10)0.3053 (3)0.2854 (8)0.0837 (15)
H2A0.230 (5)0.6135 (10)0.181 (5)0.070 (13)*
H2B0.426 (4)0.5678 (18)0.078 (4)0.076 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (7)0.0546 (6)0.0765 (7)0.0139 (5)0.0049 (5)0.0129 (5)
F10.143 (5)0.074 (5)0.141 (7)0.016 (4)0.037 (6)0.046 (5)
F20.132 (4)0.077 (3)0.116 (5)0.042 (3)0.027 (4)0.011 (3)
F30.120 (5)0.092 (3)0.150 (6)0.039 (3)0.065 (5)0.017 (4)
F1'0.110 (9)0.053 (7)0.115 (10)0.006 (6)0.014 (8)0.012 (8)
F2'0.114 (9)0.123 (8)0.153 (11)0.054 (7)0.052 (9)0.024 (8)
F3'0.135 (9)0.077 (6)0.097 (7)0.039 (6)0.009 (7)0.020 (5)
N10.0483 (17)0.0481 (17)0.0600 (19)0.0008 (14)0.0036 (14)0.0038 (14)
N20.060 (2)0.0489 (19)0.082 (2)0.0067 (17)0.0063 (18)0.0031 (17)
C10.058 (2)0.046 (2)0.059 (2)0.0055 (18)0.0029 (18)0.0059 (16)
C20.055 (2)0.049 (2)0.055 (2)0.0041 (18)0.0020 (18)0.0006 (16)
C30.046 (2)0.059 (2)0.054 (2)0.0014 (18)0.0015 (16)0.0009 (17)
C40.048 (2)0.048 (2)0.0419 (19)0.0069 (16)0.0080 (16)0.0039 (15)
C50.052 (2)0.0460 (19)0.0430 (19)0.0037 (17)0.0091 (16)0.0007 (15)
C60.076 (4)0.060 (3)0.105 (4)0.000 (3)0.012 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C41.727 (5)N2—H2A0.891 (11)
F1—C61.311 (13)N2—H2B0.895 (11)
F2—C61.414 (9)C1—C21.364 (6)
F3—C61.287 (7)C1—H10.9300
F1'—C61.27 (2)C2—C31.385 (6)
F2'—C61.162 (14)C2—C61.474 (6)
F3'—C61.508 (15)C3—C41.347 (5)
N1—C11.327 (5)C3—H30.9300
N1—C51.340 (5)C4—C51.401 (6)
N2—C51.332 (5)
C1—N1—C5118.4 (3)F2'—C6—F355.6 (11)
C5—N2—H2A123 (2)F1'—C6—F3124.4 (11)
C5—N2—H2B121 (2)F2'—C6—F1125.0 (11)
H2A—N2—H2B115.1 (19)F1'—C6—F123.6 (11)
N1—C1—C2124.1 (3)F3—C6—F1110.7 (8)
N1—C1—H1117.9F2'—C6—F246.1 (14)
C2—C1—H1117.9F1'—C6—F282.5 (11)
C1—C2—C3117.8 (3)F3—C6—F2101.0 (7)
C1—C2—C6120.6 (4)F1—C6—F2104.5 (7)
C3—C2—C6121.6 (4)F2'—C6—C2120.2 (8)
C4—C3—C2119.0 (4)F1'—C6—C2114.6 (12)
C4—C3—H3120.5F3—C6—C2115.6 (5)
C2—C3—H3120.5F1—C6—C2113.4 (8)
C3—C4—C5120.5 (3)F2—C6—C2110.4 (5)
C3—C4—Cl1121.0 (3)F2'—C6—F3'101.6 (12)
C5—C4—Cl1118.4 (3)F1'—C6—F3'98.5 (10)
N2—C5—N1117.5 (3)F3—C6—F3'47.3 (6)
N2—C5—C4122.4 (3)F1—C6—F3'75.9 (8)
N1—C5—C4120.1 (3)F2—C6—F3'141.9 (7)
F2'—C6—F1'113.8 (16)C2—C6—F3'103.8 (6)
C5—N1—C1—C20.5 (5)C1—C2—C6—F2'125.8 (19)
N1—C1—C2—C30.6 (6)C3—C2—C6—F2'53 (2)
N1—C1—C2—C6179.5 (4)C1—C2—C6—F1'15.4 (13)
C1—C2—C3—C41.2 (5)C3—C2—C6—F1'165.7 (12)
C6—C2—C3—C4179.9 (4)C1—C2—C6—F3170.6 (9)
C2—C3—C4—C50.8 (5)C3—C2—C6—F310.5 (11)
C2—C3—C4—Cl1179.9 (3)C1—C2—C6—F141.3 (9)
C1—N1—C5—N2178.4 (3)C3—C2—C6—F1139.8 (7)
C1—N1—C5—C40.9 (5)C1—C2—C6—F275.5 (6)
C3—C4—C5—N2179.0 (3)C3—C2—C6—F2103.3 (6)
Cl1—C4—C5—N21.6 (5)C1—C2—C6—F3'121.6 (9)
C3—C4—C5—N10.3 (5)C3—C2—C6—F3'59.5 (10)
Cl1—C4—C5—N1179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.89 (2)2.60 (3)2.965 (9)105 (2)
N2—H2B···N1i0.89 (3)2.16 (3)3.049 (9)171 (3)
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H4ClF3N2
Mr196.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.801 (1), 17.978 (5), 7.578 (2)
β (°) 100.19 (4)
V3)777.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.893, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
3820, 1368, 904
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.02
No. of reflections1368
No. of parameters145
No. of restraints39
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.89 (2)2.60 (3)2.965 (9)105.3 (19)
N2—H2B···N1i0.89 (3)2.16 (3)3.049 (9)171 (3)
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

The authors thank the fund of the Ordnance Technology Institute for support.

References

First citationBruker (1997). SADABS (Version 2.0), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Z.-J., Miyoshi, H., Komyoji, T., Haga, T. & Fujita, T. (1991). Biochim. Biophys. Acta, 1056, 89–92.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds