metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-hy­droxy­ethyl­idenedi­phosphon­ato(1−)](1,10-phenanthroline)nickel(II) mono­hydrate

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn

(Received 7 November 2007; accepted 2 December 2007; online 23 January 2008)

In the mononuclear title compound, [Ni(C2H6O7P2)2(C12H8N2)]·H2O, the NiII atom (site symmetry 2) is bonded to two phosphate-based O,O′-bidentate chelate ligands and one N,N′-bidentate 1,10-phenanthroline ligand, resulting in a slightly distorted cis-NiN2O4 octa­hedral geometry. In the crystal structure, pairs of complexes are linked by double hydrogen bonds, forming a one-dimensional chain-like structure. Aromatic ππ stacking inter­actions [centroid–centroid separation = 3.768 (2) Å] and further hydrogen bonds generate a two-dimensional structure. The water O atom also lies on a crystallographic twofold axis.

Related literature

For related literature, see: Song et al. (1999[Song, H.-H., Zheng, L.-M., Lin, C.-H., Wang, S.-L., Xin, X.-Q. & Gao, S. (1999). Chem. Mater. 11, 2382-2388.]); Xiang et al. (2007[Xiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct. 826, 143-149.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H6O7P2)2(C12H8N2)]·H2O

  • Mr = 664.95

  • Monoclinic, C 2/c

  • a = 17.108 (2) Å

  • b = 18.572 (2) Å

  • c = 7.5142 (9) Å

  • β = 90.164 (2)°

  • V = 2387.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 (2) K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.819

  • 6424 measured reflections

  • 2268 independent reflections

  • 1857 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.101

  • S = 1.06

  • 2268 reflections

  • 187 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.059 (3)
Ni1—O3 2.065 (3)
Ni1—O4 2.109 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O7 0.85 (6) 1.93 (6) 2.758 (5) 166 (6)
O2—H2A⋯O1Wi 0.84 (4) 1.91 (4) 2.748 (4) 175 (6)
O6—H6A⋯O4ii 0.83 (4) 1.82 (4) 2.644 (3) 171 (5)
O7—H7⋯O4 0.82 2.47 2.894 (4) 113
O7—H7⋯O3iii 0.82 2.08 2.889 (4) 169
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y, -z+{\script{3\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal–phosphonate compounds are of current interest due to their fascinating topologies and novel physical properties (e.g. Song et al. 1999; Xiang et al. 2007).

In the title compound, (I), the NiII ion with site symmetry 2, is chelated by four oxygen atoms from two phosphate-containing O,O-chelate ligands and two nitrogen atoms from an N,N-chelating 1,10-phenanthroline (phen) ligand to generate a cis-NiN2O4 distorted octahedral coordination geometry (Fig. 1, Table 1).

Intermolecular hydrogen bond interactions (Table 2) occur between the phosphate ligands Each complex is connected with its neighbours by hydrogen bonds to form one-dimensional chain (Fig. 2). Aromatic π-π stacking interactions with distance between ring centroids of 3.768 (2) Å extend the width of the chain. Water molecules between those chains act as bridges to generate two dimensional structure through further O-H···O hydrogen bonds

Related literature top

For related literature, see: Song et al. (1999); Xiang et al. (2007).

Experimental top

1,10-Phenanthroline (1 mmol), Ni(NO3)2.6H2O (2 mmol), 1-hydroxyethylidenediphosphonic acid (0.2 ml) and ethanol/H2O (v:v = 1:3, 40 ml) were mixed. The resulting mixture was heated and stirred for 4 h and the solution was filtered. By slow evaporation of the solvent, blue blocks of (I) were obtained after several months.

Refinement top

The water H atoms were located from difference maps and their positions freely refined with Uiso(H) = 1.5Ueq(O). The other H atoms were geometrically placed (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. Atoms with the suffix A are generated by the symmetry operation (-x, y, 1/2 - z).
[Figure 2] Fig. 2. Two-dimensional structure of (I) formed by π-π stacking interactions between hydrogen bonded chains.
Bis[1-hydroxyethylidenediphosphonato(1-)](1,10-phenanthroline)nickel(II) monohydrate top
Crystal data top
[Ni(C2H6O7P2)2(C12H8N2)]·H2OF(000) = 1360
Mr = 664.95Dx = 1.850 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 542 reflections
a = 17.108 (2) Åθ = 2.8–24.7°
b = 18.572 (2) ŵ = 1.16 mm1
c = 7.5142 (9) ÅT = 293 K
β = 90.164 (2)°Block, blue
V = 2387.5 (5) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2268 independent reflections
Radiation source: fine-focus sealed tube1857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2020
Tmin = 0.770, Tmax = 0.819k = 1422
6424 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difmap and geom
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.041P)2 + 5.7735P]
where P = (Fo2 + 2Fc2)/3
2268 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.53 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C2H6O7P2)2(C12H8N2)]·H2OV = 2387.5 (5) Å3
Mr = 664.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.108 (2) ŵ = 1.16 mm1
b = 18.572 (2) ÅT = 293 K
c = 7.5142 (9) Å0.22 × 0.20 × 0.18 mm
β = 90.164 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1857 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.819Rint = 0.043
6424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.53 e Å3
2268 reflectionsΔρmin = 0.32 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.093 (2)0.050 (3)0.236 (8)0.07 (2)*
H6A0.0606 (18)0.256 (3)0.852 (6)0.044 (15)*
O1W0.00000.0069 (3)0.75000.0356 (11)
O70.03755 (15)0.11993 (14)0.5280 (4)0.0245 (6)
H70.00460.14550.48000.037*
O50.17574 (14)0.28983 (14)0.5476 (3)0.0220 (6)
Ni10.00000.27786 (4)0.25000.01343 (19)
P10.13862 (5)0.15397 (5)0.27824 (13)0.0161 (2)
P20.10427 (5)0.24696 (6)0.59910 (12)0.0157 (2)
O30.07673 (14)0.19644 (14)0.1833 (3)0.0192 (6)
O40.02826 (14)0.27551 (13)0.5233 (3)0.0159 (6)
N10.07336 (17)0.36185 (17)0.1867 (4)0.0175 (7)
O20.13487 (17)0.07260 (16)0.2226 (4)0.0295 (7)
O10.22184 (14)0.17731 (16)0.2446 (4)0.0265 (7)
O60.10100 (15)0.24085 (17)0.8048 (3)0.0257 (7)
C50.0390 (2)0.4269 (2)0.2147 (5)0.0177 (8)
C10.1439 (2)0.3607 (2)0.1143 (5)0.0219 (9)
H10.16740.31640.09310.026*
C20.1846 (2)0.4237 (2)0.0684 (5)0.0293 (10)
H20.23380.42100.01640.035*
C80.1142 (2)0.1545 (2)0.5157 (5)0.0177 (8)
C60.0362 (3)0.5580 (2)0.2142 (6)0.0347 (11)
H60.06050.60160.18890.042*
C40.0760 (3)0.4923 (2)0.1766 (5)0.0258 (9)
C70.1711 (2)0.1109 (2)0.6265 (6)0.0293 (10)
H7A0.15330.10910.74750.044*
H7B0.22180.13300.62250.044*
H7C0.17430.06280.57980.044*
C30.1510 (3)0.4888 (2)0.1011 (6)0.0317 (11)
H30.17760.53100.07340.038*
H1WA0.014 (5)0.036 (3)0.669 (8)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.042 (3)0.025 (3)0.040 (3)0.0000.001 (2)0.000
O70.0212 (14)0.0220 (15)0.0303 (17)0.0014 (12)0.0010 (12)0.0085 (13)
O50.0159 (13)0.0305 (17)0.0198 (14)0.0035 (12)0.0005 (11)0.0011 (12)
Ni10.0139 (3)0.0141 (4)0.0122 (3)0.0000.0011 (3)0.000
P10.0134 (5)0.0183 (5)0.0165 (5)0.0021 (4)0.0013 (4)0.0034 (4)
P20.0128 (5)0.0219 (6)0.0124 (5)0.0008 (4)0.0010 (4)0.0011 (4)
O30.0180 (13)0.0239 (15)0.0156 (14)0.0043 (11)0.0016 (11)0.0013 (11)
O40.0153 (13)0.0201 (14)0.0122 (13)0.0008 (11)0.0010 (10)0.0008 (11)
N10.0176 (16)0.0212 (18)0.0136 (16)0.0013 (14)0.0031 (13)0.0015 (13)
O20.0306 (17)0.0215 (16)0.0365 (18)0.0042 (14)0.0010 (14)0.0063 (14)
O10.0150 (13)0.0427 (18)0.0218 (15)0.0044 (13)0.0006 (11)0.0085 (13)
O60.0179 (14)0.0456 (19)0.0134 (14)0.0072 (13)0.0002 (12)0.0013 (13)
C50.028 (2)0.013 (2)0.0125 (19)0.0014 (16)0.0047 (16)0.0007 (15)
C10.0205 (19)0.026 (2)0.019 (2)0.0005 (17)0.0023 (16)0.0004 (17)
C20.023 (2)0.043 (3)0.022 (2)0.009 (2)0.0021 (17)0.005 (2)
C80.0162 (18)0.017 (2)0.020 (2)0.0003 (15)0.0008 (15)0.0045 (16)
C60.051 (3)0.015 (2)0.038 (3)0.009 (2)0.007 (2)0.0020 (19)
C40.037 (2)0.021 (2)0.019 (2)0.0084 (19)0.0071 (18)0.0027 (17)
C70.026 (2)0.034 (3)0.028 (2)0.0110 (19)0.0049 (18)0.006 (2)
C30.037 (3)0.028 (3)0.030 (2)0.014 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
O1W—H1WA0.85 (6)N1—C51.360 (5)
O7—C81.464 (4)O2—H2A0.84 (2)
O7—H70.8200O6—H6A0.83 (4)
O5—P21.511 (3)C5—C41.400 (5)
Ni1—N12.059 (3)C5—C5i1.438 (7)
Ni1—N1i2.059 (3)C1—C21.406 (6)
Ni1—O3i2.065 (3)C1—H10.9300
Ni1—O32.065 (3)C2—C31.362 (6)
Ni1—O42.109 (2)C2—H20.9300
Ni1—O4i2.109 (2)C8—C71.514 (5)
P1—O31.499 (3)C6—C6i1.352 (9)
P1—O11.510 (3)C6—C41.426 (6)
P1—O21.569 (3)C6—H60.9300
P1—C81.834 (4)C4—C31.405 (6)
P2—O41.514 (3)C7—H7A0.9600
P2—O61.551 (3)C7—H7B0.9600
P2—C81.836 (4)C7—H7C0.9600
N1—C11.326 (5)C3—H30.9300
C8—O7—H7109.5P1—O2—H2A119 (4)
N1—Ni1—N1i81.47 (17)P2—O6—H6A116 (3)
N1—Ni1—O3i177.81 (11)N1—C5—C4122.9 (4)
N1i—Ni1—O3i96.34 (11)N1—C5—C5i117.3 (2)
N1—Ni1—O396.34 (11)C4—C5—C5i119.8 (2)
N1i—Ni1—O3177.81 (11)N1—C1—C2122.6 (4)
O3i—Ni1—O385.85 (14)N1—C1—H1118.7
N1—Ni1—O495.88 (11)C2—C1—H1118.7
N1i—Ni1—O485.92 (11)C3—C2—C1119.0 (4)
O3i—Ni1—O483.84 (10)C3—C2—H2120.5
O3—Ni1—O494.41 (9)C1—C2—H2120.5
N1—Ni1—O4i85.92 (11)O7—C8—C7107.8 (3)
N1i—Ni1—O4i95.88 (11)O7—C8—P1105.4 (2)
O3i—Ni1—O4i94.41 (9)C7—C8—P1112.6 (3)
O3—Ni1—O4i83.84 (10)O7—C8—P2107.7 (2)
O4—Ni1—O4i177.63 (14)C7—C8—P2111.9 (3)
O3—P1—O1115.74 (16)P1—C8—P2111.03 (19)
O3—P1—O2110.59 (16)C6i—C6—C4121.2 (2)
O1—P1—O2105.64 (16)C6i—C6—H6119.4
O3—P1—C8107.32 (15)C4—C6—H6119.4
O1—P1—C8112.24 (16)C5—C4—C3117.2 (4)
O2—P1—C8104.79 (17)C5—C4—C6119.0 (4)
O5—P2—O4114.45 (15)C3—C4—C6123.8 (4)
O5—P2—O6109.01 (15)C8—C7—H7A109.5
O4—P2—O6111.53 (14)C8—C7—H7B109.5
O5—P2—C8109.23 (16)H7A—C7—H7B109.5
O4—P2—C8106.25 (16)C8—C7—H7C109.5
O6—P2—C8105.99 (17)H7A—C7—H7C109.5
P1—O3—Ni1135.93 (15)H7B—C7—H7C109.5
P2—O4—Ni1124.60 (14)C2—C3—C4120.0 (4)
C1—N1—C5118.2 (3)C2—C3—H3120.0
C1—N1—Ni1129.7 (3)C4—C3—H3120.0
C5—N1—Ni1111.9 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O70.85 (6)1.93 (6)2.758 (5)166 (6)
O2—H2A···O1Wii0.84 (4)1.91 (4)2.748 (4)175 (6)
O6—H6A···O4iii0.83 (4)1.82 (4)2.644 (3)171 (5)
O7—H7···O40.822.472.894 (4)113
O7—H7···O3i0.822.082.889 (4)169
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H6O7P2)2(C12H8N2)]·H2O
Mr664.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.108 (2), 18.572 (2), 7.5142 (9)
β (°) 90.164 (2)
V3)2387.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.770, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
6424, 2268, 1857
Rint0.043
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.06
No. of reflections2268
No. of parameters187
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected bond lengths (Å) top
Ni1—N12.059 (3)Ni1—O42.109 (2)
Ni1—O32.065 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O70.85 (6)1.93 (6)2.758 (5)166 (6)
O2—H2A···O1Wi0.84 (4)1.91 (4)2.748 (4)175 (6)
O6—H6A···O4ii0.83 (4)1.82 (4)2.644 (3)171 (5)
O7—H7···O40.822.472.894 (4)113
O7—H7···O3iii0.822.082.889 (4)169
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+3/2; (iii) x, y, z+1/2.
 

Acknowledgements

This project is supported by the Natural Science Foundation of the Education Bureau of Liaoning Province.

References

First citationBruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSong, H.-H., Zheng, L.-M., Lin, C.-H., Wang, S.-L., Xin, X.-Q. & Gao, S. (1999). Chem. Mater. 11, 2382–2388.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct. 826, 143–149.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds