metal-organic compounds
Bis[1-hydroxyethylidenediphosphonato(1−)](1,10-phenanthroline)nickel(II) monohydrate
aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn
In the mononuclear title compound, [Ni(C2H6O7P2)2(C12H8N2)]·H2O, the NiII atom (site symmetry 2) is bonded to two phosphate-based O,O′-bidentate chelate ligands and one N,N′-bidentate 1,10-phenanthroline ligand, resulting in a slightly distorted cis-NiN2O4 octahedral geometry. In the pairs of complexes are linked by double hydrogen bonds, forming a one-dimensional chain-like structure. Aromatic π–π stacking interactions [centroid–centroid separation = 3.768 (2) Å] and further hydrogen bonds generate a two-dimensional structure. The water O atom also lies on a crystallographic twofold axis.
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807065129/hb2645sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807065129/hb2645Isup2.hkl
1,10-Phenanthroline (1 mmol), Ni(NO3)2.6H2O (2 mmol), 1-hydroxyethylidenediphosphonic acid (0.2 ml) and ethanol/H2O (v:v = 1:3, 40 ml) were mixed. The resulting mixture was heated and stirred for 4 h and the solution was filtered. By slow evaporation of the solvent, blue blocks of (I) were obtained after several months.
The water H atoms were located from difference maps and their positions freely refined with Uiso(H) = 1.5Ueq(O). The other H atoms were geometrically placed (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).[Ni(C2H6O7P2)2(C12H8N2)]·H2O | F(000) = 1360 |
Mr = 664.95 | Dx = 1.850 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C2yc | Cell parameters from 542 reflections |
a = 17.108 (2) Å | θ = 2.8–24.7° |
b = 18.572 (2) Å | µ = 1.16 mm−1 |
c = 7.5142 (9) Å | T = 293 K |
β = 90.164 (2)° | Block, blue |
V = 2387.5 (5) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2268 independent reflections |
Radiation source: fine-focus sealed tube | 1857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 25.7°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −20→20 |
Tmin = 0.770, Tmax = 0.819 | k = −14→22 |
6424 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: difmap and geom |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.041P)2 + 5.7735P] where P = (Fo2 + 2Fc2)/3 |
2268 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.53 e Å−3 |
3 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C2H6O7P2)2(C12H8N2)]·H2O | V = 2387.5 (5) Å3 |
Mr = 664.95 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.108 (2) Å | µ = 1.16 mm−1 |
b = 18.572 (2) Å | T = 293 K |
c = 7.5142 (9) Å | 0.22 × 0.20 × 0.18 mm |
β = 90.164 (2)° |
Bruker SMART CCD diffractometer | 2268 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1857 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.819 | Rint = 0.043 |
6424 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 3 restraints |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.53 e Å−3 |
2268 reflections | Δρmin = −0.32 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H2A | 0.093 (2) | 0.050 (3) | 0.236 (8) | 0.07 (2)* | |
H6A | 0.0606 (18) | 0.256 (3) | 0.852 (6) | 0.044 (15)* | |
O1W | 0.0000 | 0.0069 (3) | 0.7500 | 0.0356 (11) | |
O7 | 0.03755 (15) | 0.11993 (14) | 0.5280 (4) | 0.0245 (6) | |
H7 | 0.0046 | 0.1455 | 0.4800 | 0.037* | |
O5 | 0.17574 (14) | 0.28983 (14) | 0.5476 (3) | 0.0220 (6) | |
Ni1 | 0.0000 | 0.27786 (4) | 0.2500 | 0.01343 (19) | |
P1 | 0.13862 (5) | 0.15397 (5) | 0.27824 (13) | 0.0161 (2) | |
P2 | 0.10427 (5) | 0.24696 (6) | 0.59910 (12) | 0.0157 (2) | |
O3 | 0.07673 (14) | 0.19644 (14) | 0.1833 (3) | 0.0192 (6) | |
O4 | 0.02826 (14) | 0.27551 (13) | 0.5233 (3) | 0.0159 (6) | |
N1 | 0.07336 (17) | 0.36185 (17) | 0.1867 (4) | 0.0175 (7) | |
O2 | 0.13487 (17) | 0.07260 (16) | 0.2226 (4) | 0.0295 (7) | |
O1 | 0.22184 (14) | 0.17731 (16) | 0.2446 (4) | 0.0265 (7) | |
O6 | 0.10100 (15) | 0.24085 (17) | 0.8048 (3) | 0.0257 (7) | |
C5 | 0.0390 (2) | 0.4269 (2) | 0.2147 (5) | 0.0177 (8) | |
C1 | 0.1439 (2) | 0.3607 (2) | 0.1143 (5) | 0.0219 (9) | |
H1 | 0.1674 | 0.3164 | 0.0931 | 0.026* | |
C2 | 0.1846 (2) | 0.4237 (2) | 0.0684 (5) | 0.0293 (10) | |
H2 | 0.2338 | 0.4210 | 0.0164 | 0.035* | |
C8 | 0.1142 (2) | 0.1545 (2) | 0.5157 (5) | 0.0177 (8) | |
C6 | 0.0362 (3) | 0.5580 (2) | 0.2142 (6) | 0.0347 (11) | |
H6 | 0.0605 | 0.6016 | 0.1889 | 0.042* | |
C4 | 0.0760 (3) | 0.4923 (2) | 0.1766 (5) | 0.0258 (9) | |
C7 | 0.1711 (2) | 0.1109 (2) | 0.6265 (6) | 0.0293 (10) | |
H7A | 0.1533 | 0.1091 | 0.7475 | 0.044* | |
H7B | 0.2218 | 0.1330 | 0.6225 | 0.044* | |
H7C | 0.1743 | 0.0628 | 0.5798 | 0.044* | |
C3 | 0.1510 (3) | 0.4888 (2) | 0.1011 (6) | 0.0317 (11) | |
H3 | 0.1776 | 0.5310 | 0.0734 | 0.038* | |
H1WA | 0.014 (5) | 0.036 (3) | 0.669 (8) | 0.14 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.042 (3) | 0.025 (3) | 0.040 (3) | 0.000 | −0.001 (2) | 0.000 |
O7 | 0.0212 (14) | 0.0220 (15) | 0.0303 (17) | −0.0014 (12) | 0.0010 (12) | 0.0085 (13) |
O5 | 0.0159 (13) | 0.0305 (17) | 0.0198 (14) | −0.0035 (12) | 0.0005 (11) | −0.0011 (12) |
Ni1 | 0.0139 (3) | 0.0141 (4) | 0.0122 (3) | 0.000 | −0.0011 (3) | 0.000 |
P1 | 0.0134 (5) | 0.0183 (5) | 0.0165 (5) | 0.0021 (4) | −0.0013 (4) | −0.0034 (4) |
P2 | 0.0128 (5) | 0.0219 (6) | 0.0124 (5) | 0.0008 (4) | −0.0010 (4) | −0.0011 (4) |
O3 | 0.0180 (13) | 0.0239 (15) | 0.0156 (14) | 0.0043 (11) | 0.0016 (11) | −0.0013 (11) |
O4 | 0.0153 (13) | 0.0201 (14) | 0.0122 (13) | 0.0008 (11) | −0.0010 (10) | −0.0008 (11) |
N1 | 0.0176 (16) | 0.0212 (18) | 0.0136 (16) | −0.0013 (14) | −0.0031 (13) | 0.0015 (13) |
O2 | 0.0306 (17) | 0.0215 (16) | 0.0365 (18) | 0.0042 (14) | 0.0010 (14) | −0.0063 (14) |
O1 | 0.0150 (13) | 0.0427 (18) | 0.0218 (15) | −0.0044 (13) | 0.0006 (11) | −0.0085 (13) |
O6 | 0.0179 (14) | 0.0456 (19) | 0.0134 (14) | 0.0072 (13) | −0.0002 (12) | −0.0013 (13) |
C5 | 0.028 (2) | 0.013 (2) | 0.0125 (19) | −0.0014 (16) | −0.0047 (16) | −0.0007 (15) |
C1 | 0.0205 (19) | 0.026 (2) | 0.019 (2) | −0.0005 (17) | −0.0023 (16) | −0.0004 (17) |
C2 | 0.023 (2) | 0.043 (3) | 0.022 (2) | −0.009 (2) | 0.0021 (17) | 0.005 (2) |
C8 | 0.0162 (18) | 0.017 (2) | 0.020 (2) | 0.0003 (15) | −0.0008 (15) | 0.0045 (16) |
C6 | 0.051 (3) | 0.015 (2) | 0.038 (3) | −0.009 (2) | −0.007 (2) | 0.0020 (19) |
C4 | 0.037 (2) | 0.021 (2) | 0.019 (2) | −0.0084 (19) | −0.0071 (18) | 0.0027 (17) |
C7 | 0.026 (2) | 0.034 (3) | 0.028 (2) | 0.0110 (19) | −0.0049 (18) | 0.006 (2) |
C3 | 0.037 (3) | 0.028 (3) | 0.030 (2) | −0.014 (2) | −0.003 (2) | 0.005 (2) |
O1W—H1WA | 0.85 (6) | N1—C5 | 1.360 (5) |
O7—C8 | 1.464 (4) | O2—H2A | 0.84 (2) |
O7—H7 | 0.8200 | O6—H6A | 0.83 (4) |
O5—P2 | 1.511 (3) | C5—C4 | 1.400 (5) |
Ni1—N1 | 2.059 (3) | C5—C5i | 1.438 (7) |
Ni1—N1i | 2.059 (3) | C1—C2 | 1.406 (6) |
Ni1—O3i | 2.065 (3) | C1—H1 | 0.9300 |
Ni1—O3 | 2.065 (3) | C2—C3 | 1.362 (6) |
Ni1—O4 | 2.109 (2) | C2—H2 | 0.9300 |
Ni1—O4i | 2.109 (2) | C8—C7 | 1.514 (5) |
P1—O3 | 1.499 (3) | C6—C6i | 1.352 (9) |
P1—O1 | 1.510 (3) | C6—C4 | 1.426 (6) |
P1—O2 | 1.569 (3) | C6—H6 | 0.9300 |
P1—C8 | 1.834 (4) | C4—C3 | 1.405 (6) |
P2—O4 | 1.514 (3) | C7—H7A | 0.9600 |
P2—O6 | 1.551 (3) | C7—H7B | 0.9600 |
P2—C8 | 1.836 (4) | C7—H7C | 0.9600 |
N1—C1 | 1.326 (5) | C3—H3 | 0.9300 |
C8—O7—H7 | 109.5 | P1—O2—H2A | 119 (4) |
N1—Ni1—N1i | 81.47 (17) | P2—O6—H6A | 116 (3) |
N1—Ni1—O3i | 177.81 (11) | N1—C5—C4 | 122.9 (4) |
N1i—Ni1—O3i | 96.34 (11) | N1—C5—C5i | 117.3 (2) |
N1—Ni1—O3 | 96.34 (11) | C4—C5—C5i | 119.8 (2) |
N1i—Ni1—O3 | 177.81 (11) | N1—C1—C2 | 122.6 (4) |
O3i—Ni1—O3 | 85.85 (14) | N1—C1—H1 | 118.7 |
N1—Ni1—O4 | 95.88 (11) | C2—C1—H1 | 118.7 |
N1i—Ni1—O4 | 85.92 (11) | C3—C2—C1 | 119.0 (4) |
O3i—Ni1—O4 | 83.84 (10) | C3—C2—H2 | 120.5 |
O3—Ni1—O4 | 94.41 (9) | C1—C2—H2 | 120.5 |
N1—Ni1—O4i | 85.92 (11) | O7—C8—C7 | 107.8 (3) |
N1i—Ni1—O4i | 95.88 (11) | O7—C8—P1 | 105.4 (2) |
O3i—Ni1—O4i | 94.41 (9) | C7—C8—P1 | 112.6 (3) |
O3—Ni1—O4i | 83.84 (10) | O7—C8—P2 | 107.7 (2) |
O4—Ni1—O4i | 177.63 (14) | C7—C8—P2 | 111.9 (3) |
O3—P1—O1 | 115.74 (16) | P1—C8—P2 | 111.03 (19) |
O3—P1—O2 | 110.59 (16) | C6i—C6—C4 | 121.2 (2) |
O1—P1—O2 | 105.64 (16) | C6i—C6—H6 | 119.4 |
O3—P1—C8 | 107.32 (15) | C4—C6—H6 | 119.4 |
O1—P1—C8 | 112.24 (16) | C5—C4—C3 | 117.2 (4) |
O2—P1—C8 | 104.79 (17) | C5—C4—C6 | 119.0 (4) |
O5—P2—O4 | 114.45 (15) | C3—C4—C6 | 123.8 (4) |
O5—P2—O6 | 109.01 (15) | C8—C7—H7A | 109.5 |
O4—P2—O6 | 111.53 (14) | C8—C7—H7B | 109.5 |
O5—P2—C8 | 109.23 (16) | H7A—C7—H7B | 109.5 |
O4—P2—C8 | 106.25 (16) | C8—C7—H7C | 109.5 |
O6—P2—C8 | 105.99 (17) | H7A—C7—H7C | 109.5 |
P1—O3—Ni1 | 135.93 (15) | H7B—C7—H7C | 109.5 |
P2—O4—Ni1 | 124.60 (14) | C2—C3—C4 | 120.0 (4) |
C1—N1—C5 | 118.2 (3) | C2—C3—H3 | 120.0 |
C1—N1—Ni1 | 129.7 (3) | C4—C3—H3 | 120.0 |
C5—N1—Ni1 | 111.9 (2) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O7 | 0.85 (6) | 1.93 (6) | 2.758 (5) | 166 (6) |
O2—H2A···O1Wii | 0.84 (4) | 1.91 (4) | 2.748 (4) | 175 (6) |
O6—H6A···O4iii | 0.83 (4) | 1.82 (4) | 2.644 (3) | 171 (5) |
O7—H7···O4 | 0.82 | 2.47 | 2.894 (4) | 113 |
O7—H7···O3i | 0.82 | 2.08 | 2.889 (4) | 169 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y, −z+1; (iii) −x, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2H6O7P2)2(C12H8N2)]·H2O |
Mr | 664.95 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.108 (2), 18.572 (2), 7.5142 (9) |
β (°) | 90.164 (2) |
V (Å3) | 2387.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.770, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6424, 2268, 1857 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.101, 1.06 |
No. of reflections | 2268 |
No. of parameters | 187 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.32 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O7 | 0.85 (6) | 1.93 (6) | 2.758 (5) | 166 (6) |
O2—H2A···O1Wi | 0.84 (4) | 1.91 (4) | 2.748 (4) | 175 (6) |
O6—H6A···O4ii | 0.83 (4) | 1.82 (4) | 2.644 (3) | 171 (5) |
O7—H7···O4 | 0.82 | 2.47 | 2.894 (4) | 113 |
O7—H7···O3iii | 0.82 | 2.08 | 2.889 (4) | 169 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y, −z+3/2; (iii) −x, y, −z+1/2. |
Acknowledgements
This project is supported by the Natural Science Foundation of the Education Bureau of Liaoning Province.
References
Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Song, H.-H., Zheng, L.-M., Lin, C.-H., Wang, S.-L., Xin, X.-Q. & Gao, S. (1999). Chem. Mater. 11, 2382–2388. Web of Science CSD CrossRef CAS Google Scholar
Xiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct. 826, 143–149. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal–phosphonate compounds are of current interest due to their fascinating topologies and novel physical properties (e.g. Song et al. 1999; Xiang et al. 2007).
In the title compound, (I), the NiII ion with site symmetry 2, is chelated by four oxygen atoms from two phosphate-containing O,O-chelate ligands and two nitrogen atoms from an N,N-chelating 1,10-phenanthroline (phen) ligand to generate a cis-NiN2O4 distorted octahedral coordination geometry (Fig. 1, Table 1).
Intermolecular hydrogen bond interactions (Table 2) occur between the phosphate ligands Each complex is connected with its neighbours by hydrogen bonds to form one-dimensional chain (Fig. 2). Aromatic π-π stacking interactions with distance between ring centroids of 3.768 (2) Å extend the width of the chain. Water molecules between those chains act as bridges to generate two dimensional structure through further O-H···O hydrogen bonds