metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua-μ4-tartrato-μ2-tartrato-dimanganese(II)] dihydrate]

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, and bDepartment of Chemistry, Anshan Normal University, Anshan 114007, People's Republic of China
*Correspondence e-mail: chhge@lnu.edu.cn

(Received 10 December 2007; accepted 20 December 2007; online 16 January 2008)

In the title compound, {[Mn(C4H4O6)(H2O)]·H2O}n, the Mn2+ ion is connected to three different tartrate anions and a water mol­ecule, resulting in a distorted MnO6 octa­hedral geometry. There are two tartrate half-anions in the asymmetric unit, both of which are completed by crystallographic twofold rotation symmetry. The tartrate dianions bridge the Mn2+ ions to form a wave-like infinite layer. A series of O—H⋯O hydrogen bonds link the layers into a three-dimensional network.

Related literature

For related literature, see: Kam et al. (2007[Kam, K. C., Young, K. L. M. & Cheetham, A. K. (2007). Cryst. Growth Des. 7, 1522-1532.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C4H4O6)(H2O)]·H2O

  • Mr = 239.04

  • Monoclinic, P 2/c

  • a = 11.029 (3) Å

  • b = 7.3925 (18) Å

  • c = 10.165 (3) Å

  • β = 112.149 (3)°

  • V = 767.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.739

  • 3884 measured reflections

  • 1507 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.10

  • 1507 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O6 2.1036 (15)
Mn1—O1 2.1444 (15)
Mn1—O5i 2.1695 (15)
Mn1—O1W 2.2018 (16)
Mn1—O3 2.2230 (14)
Mn1—O4i 2.2518 (14)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2Wii 0.82 1.81 2.628 (2) 175
O3—H3A⋯O2iii 0.82 1.75 2.561 (2) 173
O1W—H1WA⋯O2iv 0.82 2.04 2.643 (2) 130
O2W—H2WA⋯O5v 0.82 2.29 2.895 (2) 131
O2W—H2WB⋯O4i 0.82 2.25 2.919 (3) 140
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y-1, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Researchers have been interested in the study of tartrate-based coordination polymers, which has resulted in the formation of many interesting structures (e.g. Kam et al., 2007). The title compound, (I), is centrosymmetric (Fig. 1). The Mn(II) ion adopts a distorted MnO6 octahedral geometry (Table 1).

In the crystal, one (R,R) and one (S,S) tartrate ligands coordinate with two metal ions to form a 'tetrameric' A ring (Fig. 2). Then, two (R,R), two (S,S) tartrate ligands and four metal ions form 'hexameric' B ring (Fig. 2). Overal, a layered, two-dimensional, coordination polymer arises. The layers encompass small channels occupied by the uncoordinated water molecules, which interact with the layers by way of O—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Kam et al. (2007).

Experimental top

A mixture of aqueous Mn(NO3)2 (2 mmol), racemic tartaric acid (2 mmol) and NaOH (4 mmol) in 20 ml water was stirred for 2 h. The resulting solution was filtered and allowed to stand in air. Slow evaporation at room temperature for several weeks yielded yellow blocks of (I).

Refinement top

The H atoms were located in a different map, relocated in idealized positions (C—H = 0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997a).

Figures top
[Figure 1] Fig. 1. View of (I), showing displacement ellipsoids drawn at 50% probability level (arbitrary spheres for the H atoms). Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1 - x, y, 3/2 - z; (iii) x, -y, z - 1/2.
[Figure 2] Fig. 2. View of the layered network in (I) along [010] direction, with the A and B rings indicated (see text).
Poly[[diaqua-µ4-tartrato-µ2-tartrato-dimanganese(II)] dihydrate] top
Crystal data top
[Mn(C4H4O6)(H2O)]·H2OF(000) = 484
Mr = 239.04Dx = 2.068 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 456 reflections
a = 11.029 (3) Åθ = 2.8–22.3°
b = 7.3925 (18) ŵ = 1.74 mm1
c = 10.165 (3) ÅT = 293 K
β = 112.149 (3)°Block, yellow
V = 767.6 (3) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1507 independent reflections
Radiation source: fine-focus sealed tube1481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1213
Tmin = 0.661, Tmax = 0.739k = 95
3884 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.6888P]
where P = (Fo2 + 2Fc2)/3
1507 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Mn(C4H4O6)(H2O)]·H2OV = 767.6 (3) Å3
Mr = 239.04Z = 4
Monoclinic, P2/cMo Kα radiation
a = 11.029 (3) ŵ = 1.74 mm1
b = 7.3925 (18) ÅT = 293 K
c = 10.165 (3) Å0.25 × 0.20 × 0.18 mm
β = 112.149 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1507 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1481 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.739Rint = 0.012
3884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.11Δρmax = 0.45 e Å3
1507 reflectionsΔρmin = 0.69 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25422 (3)0.14754 (4)0.41123 (3)0.01934 (13)
C10.13897 (18)0.5035 (3)0.43625 (19)0.0179 (4)
C20.07525 (17)0.4815 (2)0.27492 (18)0.0162 (4)
H20.10240.58210.22940.019*
C30.42697 (17)0.2562 (3)0.74009 (19)0.0181 (4)
H30.38290.35030.67060.022*
C40.35823 (17)0.0765 (3)0.68319 (19)0.0200 (4)
O10.20895 (14)0.3801 (2)0.51027 (14)0.0251 (3)
O20.11465 (16)0.65022 (18)0.48441 (15)0.0242 (3)
O30.11895 (14)0.31700 (19)0.23691 (14)0.0212 (3)
H3A0.12450.32560.15900.032*
O40.41270 (13)0.30125 (19)0.87015 (14)0.0206 (3)
H40.40410.41140.87030.031*
O50.28552 (14)0.00821 (19)0.73884 (15)0.0241 (3)
O60.37862 (15)0.0127 (2)0.57879 (16)0.0315 (4)
O1W0.08037 (15)0.0100 (2)0.39729 (17)0.0306 (3)
H1WA0.06620.11560.37070.046*
H1WB0.09150.02980.48080.046*
O2W0.6263 (2)0.3474 (2)0.6453 (2)0.0511 (5)
H2WA0.65770.29090.72000.077*
H2WB0.57350.28190.58590.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02154 (19)0.01935 (19)0.01749 (19)0.00330 (10)0.00775 (13)0.00311 (10)
C10.0182 (8)0.0198 (9)0.0160 (9)0.0034 (7)0.0067 (7)0.0012 (7)
C20.0180 (9)0.0170 (9)0.0139 (8)0.0015 (7)0.0064 (7)0.0005 (7)
C30.0175 (9)0.0200 (9)0.0165 (8)0.0014 (7)0.0060 (7)0.0010 (7)
C40.0158 (8)0.0228 (10)0.0182 (9)0.0014 (7)0.0028 (7)0.0040 (7)
O10.0303 (8)0.0254 (7)0.0158 (7)0.0064 (6)0.0045 (6)0.0005 (5)
O20.0358 (8)0.0200 (7)0.0177 (7)0.0007 (6)0.0110 (6)0.0020 (5)
O30.0274 (7)0.0235 (7)0.0143 (6)0.0079 (6)0.0095 (5)0.0012 (5)
O40.0242 (7)0.0193 (7)0.0208 (7)0.0014 (5)0.0112 (5)0.0051 (5)
O50.0274 (7)0.0215 (7)0.0261 (7)0.0038 (6)0.0131 (6)0.0038 (5)
O60.0261 (7)0.0416 (9)0.0294 (8)0.0111 (6)0.0136 (6)0.0194 (7)
O1W0.0302 (8)0.0250 (8)0.0336 (8)0.0013 (6)0.0086 (6)0.0057 (6)
O2W0.0643 (13)0.0254 (9)0.0473 (12)0.0007 (8)0.0024 (10)0.0043 (7)
Geometric parameters (Å, º) top
Mn1—O62.1036 (15)C3—C41.530 (3)
Mn1—O12.1444 (15)C3—C3iii1.546 (3)
Mn1—O5i2.1695 (15)C3—H30.9800
Mn1—O1W2.2018 (16)C4—O51.249 (2)
Mn1—O32.2230 (14)C4—O61.257 (2)
Mn1—O4i2.2518 (14)O3—H3A0.8199
C1—O11.247 (2)O4—Mn1iv2.2518 (14)
C1—O21.260 (2)O4—H40.8198
C1—C21.530 (2)O5—Mn1iv2.1695 (15)
C2—O31.415 (2)O1W—H1WA0.8215
C2—C2ii1.542 (3)O1W—H1WB0.8237
C2—H20.9800O2W—H2WA0.8201
C3—O41.429 (2)O2W—H2WB0.8201
O6—Mn1—O1105.52 (6)C2ii—C2—H2109.1
O6—Mn1—O5i97.63 (6)O4—C3—C4109.91 (15)
O1—Mn1—O5i153.64 (6)O4—C3—C3iii110.62 (18)
O6—Mn1—O1W92.32 (6)C4—C3—C3iii113.12 (11)
O1—Mn1—O1W95.92 (6)O4—C3—H3107.7
O5i—Mn1—O1W95.55 (6)C4—C3—H3107.7
O6—Mn1—O3178.49 (5)C3iii—C3—H3107.7
O1—Mn1—O373.58 (5)O5—C4—O6125.50 (19)
O5i—Mn1—O383.51 (5)O5—C4—C3119.39 (16)
O1W—Mn1—O386.58 (6)O6—C4—C3115.08 (17)
O6—Mn1—O4i96.86 (6)C1—O1—Mn1120.25 (12)
O1—Mn1—O4i90.96 (6)C2—O3—Mn1117.52 (10)
O5i—Mn1—O4i73.67 (5)C2—O3—H3A110.8
O1W—Mn1—O4i166.64 (6)Mn1—O3—H3A122.8
O3—Mn1—O4i84.40 (5)C3—O4—Mn1iv114.70 (10)
O1—C1—O2124.68 (17)C3—O4—H4106.7
O1—C1—C2119.90 (16)Mn1iv—O4—H4113.7
O2—C1—C2115.41 (16)C4—O5—Mn1iv119.92 (12)
O3—C2—C1108.55 (14)C4—O6—Mn1128.71 (13)
O3—C2—C2ii110.22 (11)Mn1—O1W—H1WA125.2
C1—C2—C2ii110.78 (18)Mn1—O1W—H1WB103.9
O3—C2—H2109.1H1WA—O1W—H1WB96.1
C1—C2—H2109.1H2WA—O2W—H2WB108.4
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x+1, y, z+3/2; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2Wv0.821.812.628 (2)175
O3—H3A···O2vi0.821.752.561 (2)173
O1W—H1WA···O2vii0.822.042.643 (2)130
O2W—H2WA···O5iii0.822.292.895 (2)131
O2W—H2WB···O4i0.822.252.919 (3)140
Symmetry codes: (i) x, y, z1/2; (iii) x+1, y, z+3/2; (v) x+1, y1, z+3/2; (vi) x, y+1, z1/2; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C4H4O6)(H2O)]·H2O
Mr239.04
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)11.029 (3), 7.3925 (18), 10.165 (3)
β (°) 112.149 (3)
V3)767.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.661, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
3884, 1507, 1481
Rint0.012
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.11
No. of reflections1507
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.69

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Mn1—O62.1036 (15)Mn1—O1W2.2018 (16)
Mn1—O12.1444 (15)Mn1—O32.2230 (14)
Mn1—O5i2.1695 (15)Mn1—O4i2.2518 (14)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2Wii0.821.812.628 (2)175
O3—H3A···O2iii0.821.752.561 (2)173
O1W—H1WA···O2iv0.822.042.643 (2)130
O2W—H2WA···O5v0.822.292.895 (2)131
O2W—H2WB···O4i0.822.252.919 (3)140
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y1, z+3/2; (iii) x, y+1, z1/2; (iv) x, y1, z; (v) x+1, y, z+3/2.
 

Acknowledgements

This project was supported by the Natural Science Foundation of the Education Bureau of Liaoning Province (grant No. 05 L159).

References

First citationBruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKam, K. C., Young, K. L. M. & Cheetham, A. K. (2007). Cryst. Growth Des. 7, 1522–1532.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds