metal-organic compounds
Poly[[diaqua-μ4-tartrato-μ2-tartrato-dimanganese(II)] dihydrate]
aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, and bDepartment of Chemistry, Anshan Normal University, Anshan 114007, People's Republic of China
*Correspondence e-mail: chhge@lnu.edu.cn
In the title compound, {[Mn(C4H4O6)(H2O)]·H2O}n, the Mn2+ ion is connected to three different tartrate anions and a water molecule, resulting in a distorted MnO6 octahedral geometry. There are two tartrate half-anions in the both of which are completed by crystallographic twofold rotation symmetry. The tartrate dianions bridge the Mn2+ ions to form a wave-like infinite layer. A series of O—H⋯O hydrogen bonds link the layers into a three-dimensional network.
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536807067839/hb2676sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536807067839/hb2676Isup2.hkl
A mixture of aqueous Mn(NO3)2 (2 mmol), racemic tartaric acid (2 mmol) and NaOH (4 mmol) in 20 ml water was stirred for 2 h. The resulting solution was filtered and allowed to stand in air. Slow evaporation at room temperature for several weeks yielded yellow blocks of (I).
The H atoms were located in a different map, relocated in idealized positions (C—H = 0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997a).[Mn(C4H4O6)(H2O)]·H2O | F(000) = 484 |
Mr = 239.04 | Dx = 2.068 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 456 reflections |
a = 11.029 (3) Å | θ = 2.8–22.3° |
b = 7.3925 (18) Å | µ = 1.74 mm−1 |
c = 10.165 (3) Å | T = 293 K |
β = 112.149 (3)° | Block, yellow |
V = 767.6 (3) Å3 | 0.25 × 0.20 × 0.18 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 1507 independent reflections |
Radiation source: fine-focus sealed tube | 1481 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→13 |
Tmin = 0.661, Tmax = 0.739 | k = −9→5 |
3884 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.6888P] where P = (Fo2 + 2Fc2)/3 |
1507 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Mn(C4H4O6)(H2O)]·H2O | V = 767.6 (3) Å3 |
Mr = 239.04 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 11.029 (3) Å | µ = 1.74 mm−1 |
b = 7.3925 (18) Å | T = 293 K |
c = 10.165 (3) Å | 0.25 × 0.20 × 0.18 mm |
β = 112.149 (3)° |
Bruker SMART CCD diffractometer | 1507 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1481 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.739 | Rint = 0.012 |
3884 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.45 e Å−3 |
1507 reflections | Δρmin = −0.69 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.25422 (3) | 0.14754 (4) | 0.41123 (3) | 0.01934 (13) | |
C1 | 0.13897 (18) | 0.5035 (3) | 0.43625 (19) | 0.0179 (4) | |
C2 | 0.07525 (17) | 0.4815 (2) | 0.27492 (18) | 0.0162 (4) | |
H2 | 0.1024 | 0.5821 | 0.2294 | 0.019* | |
C3 | 0.42697 (17) | −0.2562 (3) | 0.74009 (19) | 0.0181 (4) | |
H3 | 0.3829 | −0.3503 | 0.6706 | 0.022* | |
C4 | 0.35823 (17) | −0.0765 (3) | 0.68319 (19) | 0.0200 (4) | |
O1 | 0.20895 (14) | 0.3801 (2) | 0.51027 (14) | 0.0251 (3) | |
O2 | 0.11465 (16) | 0.65022 (18) | 0.48441 (15) | 0.0242 (3) | |
O3 | 0.11895 (14) | 0.31700 (19) | 0.23691 (14) | 0.0212 (3) | |
H3A | 0.1245 | 0.3256 | 0.1590 | 0.032* | |
O4 | 0.41270 (13) | −0.30125 (19) | 0.87015 (14) | 0.0206 (3) | |
H4 | 0.4041 | −0.4114 | 0.8703 | 0.031* | |
O5 | 0.28552 (14) | −0.00821 (19) | 0.73884 (15) | 0.0241 (3) | |
O6 | 0.37862 (15) | −0.0127 (2) | 0.57879 (16) | 0.0315 (4) | |
O1W | 0.08037 (15) | −0.0100 (2) | 0.39729 (17) | 0.0306 (3) | |
H1WA | 0.0662 | −0.1156 | 0.3707 | 0.046* | |
H1WB | 0.0915 | −0.0298 | 0.4808 | 0.046* | |
O2W | 0.6263 (2) | 0.3474 (2) | 0.6453 (2) | 0.0511 (5) | |
H2WA | 0.6577 | 0.2909 | 0.7200 | 0.077* | |
H2WB | 0.5735 | 0.2819 | 0.5859 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.02154 (19) | 0.01935 (19) | 0.01749 (19) | 0.00330 (10) | 0.00775 (13) | 0.00311 (10) |
C1 | 0.0182 (8) | 0.0198 (9) | 0.0160 (9) | −0.0034 (7) | 0.0067 (7) | −0.0012 (7) |
C2 | 0.0180 (9) | 0.0170 (9) | 0.0139 (8) | 0.0015 (7) | 0.0064 (7) | 0.0005 (7) |
C3 | 0.0175 (9) | 0.0200 (9) | 0.0165 (8) | −0.0014 (7) | 0.0060 (7) | 0.0010 (7) |
C4 | 0.0158 (8) | 0.0228 (10) | 0.0182 (9) | −0.0014 (7) | 0.0028 (7) | 0.0040 (7) |
O1 | 0.0303 (8) | 0.0254 (7) | 0.0158 (7) | 0.0064 (6) | 0.0045 (6) | 0.0005 (5) |
O2 | 0.0358 (8) | 0.0200 (7) | 0.0177 (7) | 0.0007 (6) | 0.0110 (6) | −0.0020 (5) |
O3 | 0.0274 (7) | 0.0235 (7) | 0.0143 (6) | 0.0079 (6) | 0.0095 (5) | 0.0012 (5) |
O4 | 0.0242 (7) | 0.0193 (7) | 0.0208 (7) | 0.0014 (5) | 0.0112 (5) | 0.0051 (5) |
O5 | 0.0274 (7) | 0.0215 (7) | 0.0261 (7) | 0.0038 (6) | 0.0131 (6) | 0.0038 (5) |
O6 | 0.0261 (7) | 0.0416 (9) | 0.0294 (8) | 0.0111 (6) | 0.0136 (6) | 0.0194 (7) |
O1W | 0.0302 (8) | 0.0250 (8) | 0.0336 (8) | −0.0013 (6) | 0.0086 (6) | 0.0057 (6) |
O2W | 0.0643 (13) | 0.0254 (9) | 0.0473 (12) | 0.0007 (8) | 0.0024 (10) | 0.0043 (7) |
Mn1—O6 | 2.1036 (15) | C3—C4 | 1.530 (3) |
Mn1—O1 | 2.1444 (15) | C3—C3iii | 1.546 (3) |
Mn1—O5i | 2.1695 (15) | C3—H3 | 0.9800 |
Mn1—O1W | 2.2018 (16) | C4—O5 | 1.249 (2) |
Mn1—O3 | 2.2230 (14) | C4—O6 | 1.257 (2) |
Mn1—O4i | 2.2518 (14) | O3—H3A | 0.8199 |
C1—O1 | 1.247 (2) | O4—Mn1iv | 2.2518 (14) |
C1—O2 | 1.260 (2) | O4—H4 | 0.8198 |
C1—C2 | 1.530 (2) | O5—Mn1iv | 2.1695 (15) |
C2—O3 | 1.415 (2) | O1W—H1WA | 0.8215 |
C2—C2ii | 1.542 (3) | O1W—H1WB | 0.8237 |
C2—H2 | 0.9800 | O2W—H2WA | 0.8201 |
C3—O4 | 1.429 (2) | O2W—H2WB | 0.8201 |
O6—Mn1—O1 | 105.52 (6) | C2ii—C2—H2 | 109.1 |
O6—Mn1—O5i | 97.63 (6) | O4—C3—C4 | 109.91 (15) |
O1—Mn1—O5i | 153.64 (6) | O4—C3—C3iii | 110.62 (18) |
O6—Mn1—O1W | 92.32 (6) | C4—C3—C3iii | 113.12 (11) |
O1—Mn1—O1W | 95.92 (6) | O4—C3—H3 | 107.7 |
O5i—Mn1—O1W | 95.55 (6) | C4—C3—H3 | 107.7 |
O6—Mn1—O3 | 178.49 (5) | C3iii—C3—H3 | 107.7 |
O1—Mn1—O3 | 73.58 (5) | O5—C4—O6 | 125.50 (19) |
O5i—Mn1—O3 | 83.51 (5) | O5—C4—C3 | 119.39 (16) |
O1W—Mn1—O3 | 86.58 (6) | O6—C4—C3 | 115.08 (17) |
O6—Mn1—O4i | 96.86 (6) | C1—O1—Mn1 | 120.25 (12) |
O1—Mn1—O4i | 90.96 (6) | C2—O3—Mn1 | 117.52 (10) |
O5i—Mn1—O4i | 73.67 (5) | C2—O3—H3A | 110.8 |
O1W—Mn1—O4i | 166.64 (6) | Mn1—O3—H3A | 122.8 |
O3—Mn1—O4i | 84.40 (5) | C3—O4—Mn1iv | 114.70 (10) |
O1—C1—O2 | 124.68 (17) | C3—O4—H4 | 106.7 |
O1—C1—C2 | 119.90 (16) | Mn1iv—O4—H4 | 113.7 |
O2—C1—C2 | 115.41 (16) | C4—O5—Mn1iv | 119.92 (12) |
O3—C2—C1 | 108.55 (14) | C4—O6—Mn1 | 128.71 (13) |
O3—C2—C2ii | 110.22 (11) | Mn1—O1W—H1WA | 125.2 |
C1—C2—C2ii | 110.78 (18) | Mn1—O1W—H1WB | 103.9 |
O3—C2—H2 | 109.1 | H1WA—O1W—H1WB | 96.1 |
C1—C2—H2 | 109.1 | H2WA—O2W—H2WB | 108.4 |
Symmetry codes: (i) x, −y, z−1/2; (ii) −x, y, −z+1/2; (iii) −x+1, y, −z+3/2; (iv) x, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2Wv | 0.82 | 1.81 | 2.628 (2) | 175 |
O3—H3A···O2vi | 0.82 | 1.75 | 2.561 (2) | 173 |
O1W—H1WA···O2vii | 0.82 | 2.04 | 2.643 (2) | 130 |
O2W—H2WA···O5iii | 0.82 | 2.29 | 2.895 (2) | 131 |
O2W—H2WB···O4i | 0.82 | 2.25 | 2.919 (3) | 140 |
Symmetry codes: (i) x, −y, z−1/2; (iii) −x+1, y, −z+3/2; (v) −x+1, y−1, −z+3/2; (vi) x, −y+1, z−1/2; (vii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C4H4O6)(H2O)]·H2O |
Mr | 239.04 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.029 (3), 7.3925 (18), 10.165 (3) |
β (°) | 112.149 (3) |
V (Å3) | 767.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.74 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.661, 0.739 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3884, 1507, 1481 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.074, 1.11 |
No. of reflections | 1507 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.69 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
Mn1—O6 | 2.1036 (15) | Mn1—O1W | 2.2018 (16) |
Mn1—O1 | 2.1444 (15) | Mn1—O3 | 2.2230 (14) |
Mn1—O5i | 2.1695 (15) | Mn1—O4i | 2.2518 (14) |
Symmetry code: (i) x, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2Wii | 0.82 | 1.81 | 2.628 (2) | 175 |
O3—H3A···O2iii | 0.82 | 1.75 | 2.561 (2) | 173 |
O1W—H1WA···O2iv | 0.82 | 2.04 | 2.643 (2) | 130 |
O2W—H2WA···O5v | 0.82 | 2.29 | 2.895 (2) | 131 |
O2W—H2WB···O4i | 0.82 | 2.25 | 2.919 (3) | 140 |
Symmetry codes: (i) x, −y, z−1/2; (ii) −x+1, y−1, −z+3/2; (iii) x, −y+1, z−1/2; (iv) x, y−1, z; (v) −x+1, y, −z+3/2. |
Acknowledgements
This project was supported by the Natural Science Foundation of the Education Bureau of Liaoning Province (grant No. 05 L159).
References
Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kam, K. C., Young, K. L. M. & Cheetham, A. K. (2007). Cryst. Growth Des. 7, 1522–1532. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Researchers have been interested in the study of tartrate-based coordination polymers, which has resulted in the formation of many interesting structures (e.g. Kam et al., 2007). The title compound, (I), is centrosymmetric (Fig. 1). The Mn(II) ion adopts a distorted MnO6 octahedral geometry (Table 1).
In the crystal, one (R,R) and one (S,S) tartrate ligands coordinate with two metal ions to form a 'tetrameric' A ring (Fig. 2). Then, two (R,R), two (S,S) tartrate ligands and four metal ions form 'hexameric' B ring (Fig. 2). Overal, a layered, two-dimensional, coordination polymer arises. The layers encompass small channels occupied by the uncoordinated water molecules, which interact with the layers by way of O—H···O hydrogen bonds (Table 2).