organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-6-fluoro-7-(4-methyl­piperazin-4-ium-1-yl)-4-oxo-1,4-di­hydro­quinoline-3-carboxylate hexa­hydrate

aSchool of Pharmaceutical Science, Harbin Medical University, Harbin, 150086, People's Republic of China, and bSecond Hospital, Harbin Medical University, Harbin, 150086, People's Republic of China
*Correspondence e-mail: liangqingcheng@126.com

(Received 14 December 2007; accepted 7 January 2008; online 16 January 2008)

In the title compound, C17H20FN3O3·6H2O, the pefloxacin (pef) neutral zwitterion is accompanied by six water mol­ecules of hydration. An extensive network of O—H⋯O and N—H⋯O hydrogen bonds help to establish the crystal packing.

Related literature

For metal complexes of the pef anion, see: Baenziger et al. (1986[Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505-1509.]); An, Huang & Qi (2007[An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.]); An, Qi & Huang (2007[An, Z., Qi, W. & Huang, J. (2007). Acta Cryst. E63, m2084-m2085.]). For background on the medicinal uses of Hpef, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20FN3O3·6H2O

  • Mr = 441.46

  • Monoclinic, P 21 /n

  • a = 8.0925 (15) Å

  • b = 24.075 (5) Å

  • c = 10.8006 (19) Å

  • β = 92.064 (3)°

  • V = 2102.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.978

  • 10920 measured reflections

  • 3743 independent reflections

  • 2239 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.02

  • 3743 reflections

  • 312 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.857 (10) 1.866 (12) 2.700 (3) 164 (3)
O1W—H1W2⋯O3W 0.85 (3) 2.201 (16) 3.017 (3) 162 (3)
O2W—H2W1⋯O2 0.851 (10) 1.881 (13) 2.722 (3) 170 (4)
O2W—H2W2⋯O6W 0.86 (3) 1.91 (3) 2.765 (3) 171 (3)
O3W—H3W2⋯O1i 0.852 (10) 1.896 (13) 2.730 (3) 166 (3)
O3W—H3W1⋯O2W 0.86 (3) 1.82 (3) 2.679 (3) 175 (3)
O6W—H6W1⋯O1Wi 0.86 (3) 1.92 (3) 2.765 (4) 170 (4)
O6W—H6W2⋯O4Wii 0.847 (10) 2.17 (3) 3.007 (4) 170 (4)
N3—H3N⋯O3Wiii 0.910 (10) 1.847 (13) 2.730 (3) 163 (3)
O4W—H4W1⋯O3 0.86 (3) 1.89 (3) 2.739 (3) 169 (3)
O4W—H4W2⋯O5Wii 0.85 (3) 1.959 (15) 2.783 (3) 163 (3)
O5W—H5W1⋯O2 0.85 (3) 1.97 (3) 2.792 (3) 164 (4)
O5W—H5W1⋯O3 0.85 (3) 2.63 (4) 3.142 (3) 120 (3)
O5W—H5W2⋯O5Wii 0.84 (3) 2.06 (2) 2.769 (5) 142 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2; (iii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pefloxacin (Hpef, C17H20FN3O3, 1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-quinoline -3-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The silver(I), manganese(II) and cobalt(II) derivatives of the pefloxacin (pef) anion have been reported (Baenziger et al., 1986; An, Huang & Qi, 2007; An, Qi & Huang, 2007).

We attempted to prepare a nickel(II) complex of pef, but the title compound, (I), arose instead. The neutral Hpef zwitterion shows nominal proton transfer from O1 or O2 to N3. Consequently the C1—O1 [1.264 (3) Å] and C1—O2 [1.245 (3) Å] bond lengths are very similar. The bond angle sum for N1 of 360° indicates sp2 hybridization for this atom. The N2/N3/C11—C14 ring is a typical chair.

The components of (I) are linked by O—H···O and O—H···N hydrogen bonds (Table 1) involving all the potential donors, generating a three-dimensional supramolecular network.

Related literature top

For metal complexes of the pef anion, see: Baenziger et al. (1986); An, Huang & Qi (2007); An, Qi & Huang (2007). For background on the medicinal uses of Hpef, see: Mizuki et al. (1996).

Experimental top

A mixture of Ni(NO3)2.6H2O (0.075 g, 0.25 mmol), Hpef (0.17 g, 0.5 mmol), and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 423 K for 72 h under autogenous pressure. The targeted Ni2+ complex was not synthesized and colorless prisms of (I) were obtained from the reaction mixture after cooling.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The O– and N-bonded H atoms were located in a difference map, and were refined with a distance restraint of N—H = 0.90 (1) /%A and with Uiso(H) = 1.5Ueq(N) and O—H = 0.85 (1) /%A and with Uiso(H) = 1.5Ueq(O). Some short intermolecular H···H contacts occur; thus, the H atom positions of the water molecules should be regarded as less reliable.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% displacement ellipsoids.
1-Ethyl-6-fluoro-7-(4-methylpiperazin-4-ium-1-yl)-4-oxo-1,4-dihydroquinoline- 3-carboxylate hexahydrate top
Crystal data top
C17H20FN3O3·6H2OF(000) = 944
Mr = 441.46Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10069 reflections
a = 8.0925 (15) Åθ = 2.1–25.1°
b = 24.075 (5) ŵ = 0.12 mm1
c = 10.8006 (19) ÅT = 296 K
β = 92.064 (3)°Prism, colorless
V = 2102.9 (7) Å30.34 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3743 independent reflections
Radiation source: fine-focus sealed tube2239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.960, Tmax = 0.978k = 2528
10920 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0315P]
where P = (Fo2 + 2Fc2)/3
3743 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.22 e Å3
19 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H20FN3O3·6H2OV = 2102.9 (7) Å3
Mr = 441.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0925 (15) ŵ = 0.12 mm1
b = 24.075 (5) ÅT = 296 K
c = 10.8006 (19) Å0.34 × 0.26 × 0.18 mm
β = 92.064 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3743 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2239 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.978Rint = 0.051
10920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04819 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
3743 reflectionsΔρmin = 0.20 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4982 (2)0.12293 (6)0.56081 (13)0.0524 (5)
O10.9475 (3)0.18675 (8)0.62111 (17)0.0512 (5)
O20.9816 (3)0.13364 (8)0.78658 (17)0.0548 (6)
O30.7598 (2)0.04158 (7)0.76314 (16)0.0436 (5)
O1W1.0319 (4)0.28815 (9)0.7094 (2)0.0761 (7)
H1W11.010 (5)0.2538 (6)0.695 (3)0.114*
H1W21.104 (4)0.2906 (13)0.768 (3)0.114*
O2W1.0567 (3)0.19330 (10)0.9952 (2)0.0687 (7)
H2W11.042 (4)0.1772 (13)0.9256 (17)0.103*
H2W21.121 (4)0.1734 (12)1.042 (2)0.103*
O3W1.2764 (3)0.26876 (9)0.92250 (17)0.0558 (6)
H3W21.318 (4)0.2872 (11)0.9835 (19)0.084*
H3W11.204 (3)0.2460 (12)0.950 (2)0.084*
O4W0.6261 (3)0.02774 (10)0.9339 (2)0.0637 (6)
O5W1.0677 (3)0.04707 (12)0.9484 (2)0.0817 (8)
H5W11.022 (4)0.0705 (13)0.899 (3)0.123*
H5W20.997 (3)0.0308 (15)0.990 (4)0.123*
O6W1.2719 (3)0.13973 (11)1.1601 (3)0.0914 (9)
H6W11.360 (3)0.1585 (13)1.176 (4)0.137*
H6W21.298 (5)0.1066 (7)1.143 (4)0.137*
N10.8676 (2)0.05154 (8)0.39571 (18)0.0325 (5)
N20.5711 (3)0.12232 (8)0.31502 (18)0.0351 (5)
N30.4587 (3)0.20866 (9)0.1516 (2)0.0399 (6)
H3N0.552 (2)0.2224 (11)0.119 (2)0.060*
C10.9405 (3)0.14034 (11)0.6754 (3)0.0361 (6)
C20.8807 (3)0.09193 (10)0.6006 (2)0.0318 (6)
C30.7935 (3)0.04596 (10)0.6512 (2)0.0320 (6)
C40.7415 (3)0.00337 (10)0.5619 (2)0.0303 (6)
C50.6494 (3)0.04228 (10)0.6011 (2)0.0350 (6)
H50.62340.04540.68400.042*
C60.5981 (3)0.08168 (11)0.5202 (2)0.0354 (6)
C70.6356 (3)0.08101 (11)0.3938 (2)0.0327 (6)
C80.7274 (3)0.03613 (10)0.3540 (2)0.0318 (6)
H80.75560.03410.27140.038*
C90.7785 (3)0.00614 (10)0.4361 (2)0.0294 (6)
C100.9112 (3)0.09195 (10)0.4773 (2)0.0337 (6)
H100.96710.12250.44670.040*
C110.6038 (3)0.18058 (10)0.3458 (2)0.0404 (7)
H11B0.71000.19160.31490.048*
H11A0.60760.18530.43510.048*
C120.4696 (4)0.21632 (11)0.2885 (2)0.0422 (7)
H12B0.36460.20670.32330.051*
H12A0.49240.25500.30760.051*
C130.4413 (3)0.14871 (11)0.1185 (2)0.0390 (7)
H13B0.44750.14450.02950.047*
H13A0.33380.13550.14240.047*
C140.5745 (3)0.11382 (11)0.1818 (2)0.0391 (7)
H14B0.55600.07490.16270.047*
H14A0.68180.12430.15220.047*
C150.3210 (4)0.24236 (14)0.0946 (3)0.0607 (9)
H15A0.31800.23740.00640.091*
H15B0.33870.28090.11380.091*
H15C0.21790.23050.12700.091*
C160.9107 (3)0.05917 (12)0.2649 (2)0.0390 (7)
H16B1.00830.08240.26170.047*
H16A0.93750.02330.22990.047*
C170.7735 (4)0.08525 (15)0.1874 (3)0.0642 (10)
H17A0.74890.12130.21980.096*
H17B0.80720.08880.10350.096*
H17C0.67660.06230.18950.096*
H4W10.657 (4)0.0071 (13)0.874 (2)0.096*
H4W20.709 (3)0.0325 (14)0.984 (2)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0657 (11)0.0498 (11)0.0420 (10)0.0227 (9)0.0072 (8)0.0003 (7)
O10.0692 (14)0.0320 (12)0.0515 (13)0.0057 (10)0.0116 (10)0.0010 (9)
O20.0748 (15)0.0505 (13)0.0380 (13)0.0082 (11)0.0155 (10)0.0037 (9)
O30.0604 (13)0.0411 (12)0.0293 (11)0.0039 (10)0.0017 (9)0.0017 (8)
O1W0.097 (2)0.0451 (14)0.0843 (19)0.0009 (14)0.0253 (14)0.0077 (12)
O2W0.0744 (18)0.0650 (16)0.0660 (16)0.0009 (13)0.0099 (13)0.0230 (12)
O3W0.0567 (15)0.0574 (15)0.0531 (14)0.0038 (11)0.0015 (10)0.0151 (10)
O4W0.0667 (15)0.0719 (17)0.0519 (15)0.0112 (13)0.0060 (11)0.0213 (11)
O5W0.091 (2)0.081 (2)0.0720 (19)0.0046 (16)0.0108 (14)0.0229 (12)
O6W0.107 (2)0.0690 (18)0.096 (2)0.0147 (16)0.0310 (17)0.0081 (16)
N10.0363 (13)0.0324 (12)0.0290 (12)0.0011 (10)0.0018 (9)0.0018 (10)
N20.0484 (14)0.0282 (12)0.0280 (12)0.0011 (11)0.0074 (10)0.0007 (9)
N30.0408 (15)0.0389 (14)0.0400 (14)0.0036 (11)0.0015 (11)0.0076 (10)
C10.0346 (16)0.0341 (16)0.0395 (17)0.0036 (13)0.0005 (12)0.0017 (13)
C20.0330 (15)0.0322 (15)0.0298 (15)0.0020 (12)0.0040 (11)0.0008 (11)
C30.0324 (15)0.0327 (15)0.0305 (15)0.0051 (12)0.0031 (11)0.0002 (12)
C40.0325 (15)0.0285 (14)0.0295 (14)0.0049 (12)0.0025 (11)0.0001 (11)
C50.0409 (16)0.0380 (16)0.0258 (14)0.0016 (13)0.0013 (11)0.0029 (12)
C60.0377 (16)0.0359 (16)0.0325 (15)0.0056 (13)0.0003 (12)0.0046 (12)
C70.0316 (14)0.0332 (15)0.0327 (15)0.0062 (12)0.0045 (11)0.0026 (12)
C80.0338 (15)0.0317 (15)0.0299 (14)0.0024 (12)0.0026 (11)0.0000 (11)
C90.0278 (14)0.0304 (14)0.0299 (14)0.0053 (12)0.0009 (11)0.0011 (11)
C100.0340 (15)0.0266 (14)0.0405 (16)0.0019 (12)0.0015 (12)0.0020 (12)
C110.0492 (18)0.0333 (16)0.0378 (16)0.0046 (14)0.0090 (12)0.0014 (12)
C120.0522 (19)0.0367 (16)0.0379 (17)0.0030 (14)0.0035 (13)0.0014 (12)
C130.0450 (17)0.0415 (17)0.0304 (15)0.0026 (14)0.0021 (12)0.0020 (12)
C140.0504 (17)0.0338 (16)0.0329 (16)0.0014 (13)0.0010 (12)0.0005 (12)
C150.053 (2)0.061 (2)0.068 (2)0.0162 (17)0.0062 (16)0.0190 (16)
C160.0476 (17)0.0404 (16)0.0294 (15)0.0017 (13)0.0086 (12)0.0007 (12)
C170.073 (2)0.077 (2)0.0430 (19)0.019 (2)0.0019 (16)0.0111 (16)
Geometric parameters (Å, º) top
F1—C61.363 (3)C3—C41.459 (3)
C1—O11.264 (3)C4—C51.402 (3)
C1—O21.245 (3)C4—C91.404 (3)
C3—O31.253 (3)C5—C61.345 (3)
O1W—H1W10.857 (10)C5—H50.9300
O1W—H1W20.85 (3)C6—C71.409 (3)
O2W—H2W10.851 (10)C7—C81.388 (3)
O2W—H2W20.86 (3)C8—C91.402 (3)
O3W—H3W20.852 (10)C8—H80.9300
O3W—H3W10.86 (3)C10—H100.9300
O4W—H4W10.86 (3)C11—C121.501 (4)
O4W—H4W20.851 (10)C11—H11B0.9700
O5W—H5W10.85 (3)C11—H11A0.9700
O5W—H5W20.84 (3)C12—H12B0.9700
O6W—H6W10.86 (3)C12—H12A0.9700
O6W—H6W20.847 (10)C13—C141.510 (4)
N1—C101.351 (3)C13—H13B0.9700
N1—C91.388 (3)C13—H13A0.9700
N1—C161.479 (3)C14—H14B0.9700
N2—C71.397 (3)C14—H14A0.9700
N2—C141.454 (3)C15—H15A0.9600
N2—C111.463 (3)C15—H15B0.9600
N3—C121.490 (3)C15—H15C0.9600
N3—C131.492 (3)C16—C171.504 (4)
N3—C151.493 (3)C16—H16B0.9700
N3—H3N0.910 (10)C16—H16A0.9700
C1—C21.489 (4)C17—H17A0.9600
C2—C101.363 (3)C17—H17B0.9600
C2—C31.431 (3)C17—H17C0.9600
H1W1—O1W—H1W2109.3 (17)N1—C10—C2125.8 (2)
H2W1—O2W—H2W2109.4 (16)N1—C10—H10117.1
H3W2—O3W—H3W1108.6 (16)C2—C10—H10117.1
H4W1—O4W—H4W2108.2 (16)N2—C11—C12109.5 (2)
H5W1—O5W—H5W2110.9 (18)N2—C11—H11B109.8
H6W1—O6W—H6W2109.4 (17)C12—C11—H11B109.8
C10—N1—C9119.2 (2)N2—C11—H11A109.8
C10—N1—C16118.0 (2)C12—C11—H11A109.8
C9—N1—C16122.7 (2)H11B—C11—H11A108.2
C7—N2—C14118.8 (2)N3—C12—C11110.8 (2)
C7—N2—C11118.89 (19)N3—C12—H12B109.5
C14—N2—C11110.49 (19)C11—C12—H12B109.5
C12—N3—C13111.04 (19)N3—C12—H12A109.5
C12—N3—C15111.0 (2)C11—C12—H12A109.5
C13—N3—C15111.4 (2)H12B—C12—H12A108.1
C12—N3—H3N108.4 (19)N3—C13—C14111.7 (2)
C13—N3—H3N109.5 (19)N3—C13—H13B109.3
C15—N3—H3N105.3 (19)C14—C13—H13B109.3
O2—C1—O1123.2 (2)N3—C13—H13A109.3
O2—C1—C2119.5 (2)C14—C13—H13A109.3
O1—C1—C2117.3 (2)H13B—C13—H13A107.9
C10—C2—C3118.9 (2)N2—C14—C13109.3 (2)
C10—C2—C1117.6 (2)N2—C14—H14B109.8
C3—C2—C1123.6 (2)C13—C14—H14B109.8
O3—C3—C2124.1 (2)N2—C14—H14A109.8
O3—C3—C4120.7 (2)C13—C14—H14A109.8
C2—C3—C4115.2 (2)H14B—C14—H14A108.3
C5—C4—C9117.6 (2)N3—C15—H15A109.5
C5—C4—C3119.7 (2)N3—C15—H15B109.5
C9—C4—C3122.7 (2)H15A—C15—H15B109.5
C6—C5—C4120.8 (2)N3—C15—H15C109.5
C6—C5—H5119.6H15A—C15—H15C109.5
C4—C5—H5119.6H15B—C15—H15C109.5
C5—C6—F1118.5 (2)N1—C16—C17112.9 (2)
C5—C6—C7123.3 (2)N1—C16—H16B109.0
F1—C6—C7118.1 (2)C17—C16—H16B109.0
C8—C7—N2123.9 (2)N1—C16—H16A109.0
C8—C7—C6116.4 (2)C17—C16—H16A109.0
N2—C7—C6119.5 (2)H16B—C16—H16A107.8
C7—C8—C9121.2 (2)C16—C17—H17A109.5
C7—C8—H8119.4C16—C17—H17B109.5
C9—C8—H8119.4H17A—C17—H17B109.5
N1—C9—C8121.2 (2)C16—C17—H17C109.5
N1—C9—C4118.2 (2)H17A—C17—H17C109.5
C8—C9—C4120.6 (2)H17B—C17—H17C109.5
O2—C1—C2—C10149.2 (3)C10—N1—C9—C8178.5 (2)
O1—C1—C2—C1030.5 (3)C16—N1—C9—C81.6 (3)
O2—C1—C2—C330.8 (4)C10—N1—C9—C41.9 (3)
O1—C1—C2—C3149.5 (2)C16—N1—C9—C4178.8 (2)
C10—C2—C3—O3179.6 (2)C7—C8—C9—N1178.8 (2)
C1—C2—C3—O30.5 (4)C7—C8—C9—C41.7 (3)
C10—C2—C3—C41.5 (3)C5—C4—C9—N1179.1 (2)
C1—C2—C3—C4178.4 (2)C3—C4—C9—N10.3 (3)
O3—C3—C4—C51.5 (3)C5—C4—C9—C81.3 (3)
C2—C3—C4—C5177.4 (2)C3—C4—C9—C8179.3 (2)
O3—C3—C4—C9179.1 (2)C9—N1—C10—C22.5 (4)
C2—C3—C4—C92.0 (3)C16—N1—C10—C2179.6 (2)
C9—C4—C5—C60.3 (4)C3—C2—C10—N10.6 (4)
C3—C4—C5—C6179.1 (2)C1—C2—C10—N1179.4 (2)
C4—C5—C6—F1175.0 (2)C7—N2—C11—C12154.7 (2)
C4—C5—C6—C71.7 (4)C14—N2—C11—C1262.7 (3)
C14—N2—C7—C811.0 (4)C13—N3—C12—C1153.2 (3)
C11—N2—C7—C8128.5 (3)C15—N3—C12—C11177.7 (2)
C14—N2—C7—C6164.6 (2)N2—C11—C12—N358.1 (3)
C11—N2—C7—C656.0 (3)C12—N3—C13—C1452.3 (3)
C5—C6—C7—C81.3 (4)C15—N3—C13—C14176.6 (2)
F1—C6—C7—C8175.4 (2)C7—N2—C14—C13156.2 (2)
C5—C6—C7—N2177.2 (2)C11—N2—C14—C1361.2 (3)
F1—C6—C7—N20.4 (3)N3—C13—C14—N256.0 (3)
N2—C7—C8—C9175.3 (2)C10—N1—C16—C1793.5 (3)
C6—C7—C8—C90.4 (3)C9—N1—C16—C1783.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.86 (1)1.87 (1)2.700 (3)164 (3)
O1W—H1W2···O3W0.85 (3)2.20 (2)3.017 (3)162 (3)
O2W—H2W1···O20.85 (1)1.88 (1)2.722 (3)170 (4)
O2W—H2W2···O6W0.86 (3)1.91 (3)2.765 (3)171 (3)
O3W—H3W2···O1i0.85 (1)1.90 (1)2.730 (3)166 (3)
O3W—H3W1···O2W0.86 (3)1.82 (3)2.679 (3)175 (3)
O6W—H6W1···O1Wi0.86 (3)1.92 (3)2.765 (4)170 (4)
O6W—H6W2···O4Wii0.85 (1)2.17 (3)3.007 (4)170 (4)
N3—H3N···O3Wiii0.91 (1)1.85 (1)2.730 (3)163 (3)
O4W—H4W1···O30.86 (3)1.89 (3)2.739 (3)169 (3)
O4W—H4W2···O5Wii0.85 (3)1.96 (2)2.783 (3)163 (3)
O5W—H5W1···O20.85 (3)1.97 (3)2.792 (3)164 (4)
O5W—H5W1···O30.85 (3)2.63 (4)3.142 (3)120 (3)
O5W—H5W2···O5Wii0.84 (3)2.06 (2)2.769 (5)142 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y, z+2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H20FN3O3·6H2O
Mr441.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.0925 (15), 24.075 (5), 10.8006 (19)
β (°) 92.064 (3)
V3)2102.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.960, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10920, 3743, 2239
Rint0.051
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.02
No. of reflections3743
No. of parameters312
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.857 (10)1.866 (12)2.700 (3)164 (3)
O1W—H1W2···O3W0.85 (3)2.201 (16)3.017 (3)162 (3)
O2W—H2W1···O20.851 (10)1.881 (13)2.722 (3)170 (4)
O2W—H2W2···O6W0.86 (3)1.91 (3)2.765 (3)171 (3)
O3W—H3W2···O1i0.852 (10)1.896 (13)2.730 (3)166 (3)
O3W—H3W1···O2W0.86 (3)1.82 (3)2.679 (3)175 (3)
O6W—H6W1···O1Wi0.86 (3)1.92 (3)2.765 (4)170 (4)
O6W—H6W2···O4Wii0.847 (10)2.17 (3)3.007 (4)170 (4)
N3—H3N···O3Wiii0.910 (10)1.847 (13)2.730 (3)163 (3)
O4W—H4W1···O30.86 (3)1.89 (3)2.739 (3)169 (3)
O4W—H4W2···O5Wii0.85 (3)1.959 (15)2.783 (3)163 (3)
O5W—H5W1···O20.85 (3)1.97 (3)2.792 (3)164 (4)
O5W—H5W1···O30.85 (3)2.63 (4)3.142 (3)120 (3)
O5W—H5W2···O5Wii0.84 (3)2.06 (2)2.769 (5)142 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y, z+2; (iii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge financial support by the Science Foundation of Heilongjiang Provincial Department of Science & Technology (grant No. GC07C35204).

References

First citationAn, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAn, Z., Qi, W. & Huang, J. (2007). Acta Cryst. E63, m2084–m2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 41–45.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds