organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(2-Oxo­cyclo­pentane-1,3-di­yl)di­propane­nitrile

aCollege of Pharmaceuticals & Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and cSchool of Materials Science and Engineering, Shijizhuang Railway Institute, Shijiazhuang 050043, People's Republic of China
*Correspondence e-mail: dengyicoo@yahoo.com.cn

(Received 26 December 2007; accepted 27 December 2007; online 9 January 2008)

The complete mol­ecule of the title compound, C11H14N2O, is generated by crystallographic twofold symmetry, with the C=O group lying on the rotation axis. In the crystal structure, weak C—H⋯N inter­actions form zigzag chains of mol­ecules.

Related literature

For the synthesis, see: Westman & Kober (1964[Westman, T. L. & Kober, A. E. (1964). J. Org. Chem. 29, 2448-2450.]). For a similar compound, see: Chen et al. (2007[Chen, Y., Yang, J., Deng, Y., Li, G. & Wang, W. (2007). Acta Cryst. E63, o4054.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O

  • Mr = 190.24

  • Monoclinic, C 2/c

  • a = 18.261 (3) Å

  • b = 7.8182 (10) Å

  • c = 8.1943 (11) Å

  • β = 111.510 (9)°

  • V = 1088.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.992

  • 3003 measured reflections

  • 1114 independent reflections

  • 644 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.03

  • 1114 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N1i 0.97 2.54 3.466 (3) 160
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL).

Supporting information


Comment top

The title compound, (I), which was first prepared by Westman & Kober (1964), is as a intermediate in the synthesis of 6,7-dihydro-5H-cyclopenta[b]pyridine ramification. We report here its structure (Fig. 1). For a related structure, see Chen et al. (2007).

The complete molecule of (I) is generated by crystallographic 2-fold symmetry, with the C=O group lying on the rotation axis. In the crystal, weak C—H···N interactions (Table 1) lead to zigzag chains of molecules.

Related literature top

For the synthesis, see: Westman & Kober (1964). For a similar compound, see: Chen et al. (2007).

Experimental top

The title compound was prepared according to the method of Westman & Kober (1964). Colourless blocks of (I) were obtained by slow evaporation of a methanol solution (m.p. 335–336 K).

Refinement top

All the H atoms were positioned geometrically (C—H = 0.97–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellopsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radius. Symmetry code: (i) 2 - x, y, 1/2 - z.
3,3'-(2-Oxocyclopentane-1,3-diyl)dipropanenitrile top
Crystal data top
C11H14N2OF(000) = 408
Mr = 190.24Dx = 1.161 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 798 reflections
a = 18.261 (3) Åθ = 2.9–23.6°
b = 7.8182 (10) ŵ = 0.08 mm1
c = 8.1943 (11) ÅT = 294 K
β = 111.510 (9)°Block, colorless
V = 1088.4 (3) Å30.24 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1114 independent reflections
Radiation source: fine-focus sealed tube644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2214
Tmin = 0.971, Tmax = 0.992k = 99
3003 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1398P]
where P = (Fo2 + 2Fc2)/3
1114 reflections(Δ/σ)max = 0.002
65 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H14N2OV = 1088.4 (3) Å3
Mr = 190.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.261 (3) ŵ = 0.08 mm1
b = 7.8182 (10) ÅT = 294 K
c = 8.1943 (11) Å0.24 × 0.20 × 0.10 mm
β = 111.510 (9)°
Data collection top
Bruker SMART CCD
diffractometer
1114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
644 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.045
3003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1114 reflectionsΔρmin = 0.13 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00001.0500 (2)0.25000.0639 (6)
N10.69534 (13)0.8243 (3)0.3591 (3)0.0968 (8)
C11.00000.8948 (3)0.25000.0495 (7)
C20.95717 (10)0.7841 (2)0.0927 (2)0.0491 (5)
H20.98890.78180.01890.059*
C30.96129 (10)0.6064 (2)0.1722 (2)0.0555 (5)
H3A0.91740.58740.20970.067*
H3B0.96090.51840.08840.067*
C40.87656 (11)0.8505 (2)0.0189 (2)0.0579 (6)
H4A0.88050.97060.04430.069*
H4B0.84170.84090.04610.069*
C50.84170 (11)0.7522 (3)0.1902 (3)0.0627 (6)
H5A0.87200.77690.26300.075*
H5B0.84600.63050.16510.075*
C60.75994 (14)0.7945 (3)0.2864 (3)0.0672 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0821 (14)0.0465 (12)0.0598 (12)0.0000.0223 (10)0.000
N10.0764 (15)0.1164 (18)0.0812 (15)0.0217 (12)0.0096 (11)0.0174 (13)
C10.0539 (15)0.0485 (17)0.0538 (16)0.0000.0286 (13)0.000
C20.0550 (11)0.0493 (11)0.0462 (11)0.0005 (8)0.0222 (9)0.0018 (8)
C30.0605 (11)0.0496 (11)0.0569 (11)0.0020 (9)0.0221 (9)0.0027 (9)
C40.0598 (12)0.0566 (12)0.0554 (12)0.0026 (9)0.0191 (10)0.0027 (10)
C50.0624 (14)0.0638 (12)0.0570 (13)0.0006 (10)0.0159 (11)0.0072 (10)
C60.0680 (14)0.0697 (15)0.0570 (13)0.0067 (12)0.0147 (11)0.0095 (11)
Geometric parameters (Å, º) top
O1—C11.213 (3)C3—H3A0.9700
N1—C61.134 (3)C3—H3B0.9700
C1—C21.511 (2)C4—C51.521 (2)
C1—C2i1.511 (2)C4—H4A0.9700
C2—C41.512 (2)C4—H4B0.9700
C2—C31.525 (2)C5—C61.448 (3)
C2—H20.9800C5—H5A0.9700
C3—C3i1.518 (3)C5—H5B0.9700
O1—C1—C2124.94 (10)H3A—C3—H3B109.0
O1—C1—C2i124.95 (10)C2—C4—C5111.70 (15)
C2—C1—C2i110.1 (2)C2—C4—H4A109.3
C1—C2—C4113.82 (14)C5—C4—H4A109.3
C1—C2—C3103.22 (15)C2—C4—H4B109.3
C4—C2—C3117.13 (15)C5—C4—H4B109.3
C1—C2—H2107.4H4A—C4—H4B107.9
C4—C2—H2107.4C6—C5—C4112.71 (17)
C3—C2—H2107.4C6—C5—H5A109.1
C3i—C3—C2104.12 (10)C4—C5—H5A109.1
C3i—C3—H3A110.9C6—C5—H5B109.1
C2—C3—H3A110.9C4—C5—H5B109.1
C3i—C3—H3B110.9H5A—C5—H5B107.8
C2—C3—H3B110.9N1—C6—C5178.1 (3)
O1—C1—C2—C439.96 (17)C4—C2—C3—C3i157.50 (18)
C2i—C1—C2—C4140.04 (17)C1—C2—C4—C5170.57 (15)
O1—C1—C2—C3167.96 (8)C3—C2—C4—C569.0 (2)
C2i—C1—C2—C312.04 (8)C2—C4—C5—C6170.72 (17)
C1—C2—C3—C3i31.6 (2)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N1ii0.972.543.466 (3)160
Symmetry code: (ii) x+3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O
Mr190.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)18.261 (3), 7.8182 (10), 8.1943 (11)
β (°) 111.510 (9)
V3)1088.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3003, 1114, 644
Rint0.045
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.03
No. of reflections1114
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N1i0.972.543.466 (3)160
Symmetry code: (i) x+3/2, y1/2, z1/2.
 

References

First citationBruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Yang, J., Deng, Y., Li, G. & Wang, W. (2007). Acta Cryst. E63, o4054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestman, T. L. & Kober, A. E. (1964). J. Org. Chem. 29, 2448–2450.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds