organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloro­di­phen­oxy­methane

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 28 November 2007; accepted 20 December 2007; online 4 January 2008)

The title compound, C13H10Cl2O2, is a mixed derivative of orthocarbonic acid. The non-crystallographic symmetry of the mol­ecule is close to C2v. The aromatic residues are oriented in a syn conformation with respect to the Cl atoms. The least-squares planes through the phenyl rings enclose an angle of 36.11 (10)°. The C—O bonds at the central carbon are relatively short, and the O—C—O and Cl—C—Cl angles are smaller than the tetra­hedral angle. These metrical peculiarities including a mol­ecular symmetry close to C2v are also observed in density functional theory (DFT) calculations, thus ruling out the decisive influence of inter­molecular forces in the crystal structure. Accordingly, only few and weak inter­molecular inter­actions are found. At distances smaller than the sum of the van der Waals radii, only two attractive inter­actions are detected: a weak C—H⋯O and a weak C—H⋯Cl hydrogen bond to one of the two potential acceptor atoms each.

Related literature

For the synthesis of the title compound, see Bromley et al. (1996[Bromley, M. K., Gason, S. J., Jhingran, A. C., Looney, M. G. & Solomon, D. H. (1996). Aust. J. Chem. 49, 1261-1262.]). For the crystal structure of related tetra­aryl­oxymethanes with slightly longer C—O bonds, see Narasimhamurthy et al. (1990[Narasimhamurthy, N., Manohar, H., Samuelson, A. G. & Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2937-2941.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10Cl2O2

  • Mr = 269.11

  • Monoclinic, P 21 /c

  • a = 15.8380 (4) Å

  • b = 5.8973 (2) Å

  • c = 14.2517 (4) Å

  • β = 114.751 (2)°

  • V = 1208.85 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 200 (2) K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 9193 measured reflections

  • 2766 independent reflections

  • 2138 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 2766 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.359 (2)
O2—C1 1.360 (2)
O1—C1—O2 103.77 (13)
Cl1—C1—Cl2 105.29 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1i 0.95 2.81 3.723 (2) 161
C10—H10⋯O1ii 0.95 2.52 3.345 (3) 145
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was prepared as starting material for the synthesis of spirocyclic orthocarbonates.

In the molecule the two aromatic moieties are oriented syn with respect to the Cl atoms (Fig. 1). The bond lengths between the central C atom and the O atoms are slightly shorter than in related tetraaryloxymethanes (Narasimhamurthy et al., 1990). Unexpectedly, both the O—C—O and the Cl—C—Cl angles are smaller than the tetrahedral angle. The best planes through the phenyl moieties enclose an angle of 36.11 (10)°.

The molecular packing is shown in Figure 2. Below the limit of the sum of the van-der-Waals radii, one weak C—H···O and one weak C—H···Cl hydrogen bond were found in the asymmetric unit as well as an electrostatically repulsive C—H···H—C contact precisely at the vdW radii sum. No π stacking and no C—H···π contacts were observed within this cutoff criterion.

In agreement with the only weak intermolecular forces, the short bonds to the central carbon atom as well as the small bond angles mentioned above are corroborated by a DFT calculation on the B3LYP/6–311+G(2 d,p) level of theory.

Related literature top

For the synthesis of the title compound, see Bromley et al. (1996). For the crystal structure of related tetraaryloxymethanes with slightly longer C—O bonds, see Narasimhamurthy et al. (1990).

Experimental top

The title compound was prepared according to a published procedure (Bromley et al., 1996) upon chlorination of diphenylcarbonate with PCl5. Crystals suitable for X-ray analysis were obtained directly from the solid reaction product.

Refinement top

H atoms were refined as riding on their parent atoms with Uiso as the 1.2-fold of the pilot atom's Ueq.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of (I) viewed along [0 1 0], C—H···O hydrogen bonds drawn as yellow bars.
Dichlorodiphenoxymethane top
Crystal data top
C13H10Cl2O2F(000) = 552
Mr = 269.11Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12368 reflections
a = 15.8380 (4) Åθ = 3.1–27.5°
b = 5.8973 (2) ŵ = 0.52 mm1
c = 14.2517 (4) ÅT = 200 K
β = 114.751 (2)°Block, colourless
V = 1208.85 (6) Å30.22 × 0.20 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2138 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.034
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
CCD; rotation images; thick slices scansh = 2020
9193 measured reflectionsk = 77
2766 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.3721P]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H10Cl2O2V = 1208.85 (6) Å3
Mr = 269.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8380 (4) ŵ = 0.52 mm1
b = 5.8973 (2) ÅT = 200 K
c = 14.2517 (4) Å0.22 × 0.20 × 0.15 mm
β = 114.751 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2138 reflections with I > 2σ(I)
9193 measured reflectionsRint = 0.034
2766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
2766 reflectionsΔρmin = 0.29 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22903 (3)0.81935 (8)0.00008 (4)0.04218 (16)
Cl20.16437 (3)0.38393 (9)0.03397 (4)0.04247 (16)
O10.26019 (8)0.4390 (2)0.07857 (9)0.0370 (3)
O20.34125 (8)0.4761 (2)0.08404 (9)0.0367 (3)
C10.25543 (12)0.5198 (3)0.00839 (13)0.0327 (4)
C20.18098 (12)0.4454 (3)0.17458 (13)0.0323 (4)
C30.12316 (13)0.2594 (3)0.20312 (14)0.0367 (4)
H30.13450.13360.15780.044*
C40.04817 (13)0.2588 (4)0.29911 (14)0.0379 (4)
H40.00710.13270.31980.046*
C50.03320 (13)0.4419 (3)0.36477 (14)0.0371 (4)
H50.01870.44240.43010.045*
C60.09367 (13)0.6242 (3)0.33543 (14)0.0394 (5)
H60.08360.74840.38130.047*
C70.16881 (13)0.6273 (3)0.23968 (14)0.0375 (4)
H70.21080.75160.21940.045*
C80.36336 (11)0.5446 (3)0.18686 (14)0.0332 (4)
C90.34856 (13)0.3947 (3)0.25296 (15)0.0404 (5)
H90.31950.25250.22860.048*
C100.37686 (13)0.4557 (4)0.35513 (16)0.0448 (5)
H100.36700.35470.40150.054*
C110.41948 (12)0.6623 (4)0.39062 (15)0.0418 (5)
H110.43820.70390.46090.050*
C120.43477 (13)0.8085 (3)0.32332 (15)0.0411 (5)
H120.46450.95000.34770.049*
C130.40687 (12)0.7493 (3)0.22053 (15)0.0377 (4)
H130.41770.84860.17420.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0470 (3)0.0337 (3)0.0407 (3)0.0093 (2)0.0133 (2)0.0033 (2)
Cl20.0378 (3)0.0472 (3)0.0451 (3)0.0041 (2)0.0199 (2)0.0028 (2)
O10.0306 (7)0.0447 (8)0.0353 (7)0.0066 (5)0.0134 (5)0.0046 (6)
O20.0288 (6)0.0427 (8)0.0357 (7)0.0091 (5)0.0108 (5)0.0002 (6)
C10.0302 (9)0.0314 (10)0.0352 (10)0.0054 (7)0.0126 (8)0.0009 (8)
C20.0297 (9)0.0371 (10)0.0318 (9)0.0045 (7)0.0146 (7)0.0024 (8)
C30.0459 (11)0.0300 (10)0.0354 (10)0.0030 (8)0.0182 (9)0.0028 (8)
C40.0406 (10)0.0394 (11)0.0361 (10)0.0066 (8)0.0183 (8)0.0059 (9)
C50.0385 (10)0.0471 (12)0.0277 (9)0.0000 (8)0.0157 (8)0.0011 (9)
C60.0474 (11)0.0417 (11)0.0335 (10)0.0002 (9)0.0213 (9)0.0068 (9)
C70.0411 (10)0.0368 (11)0.0398 (10)0.0064 (8)0.0222 (9)0.0028 (9)
C80.0253 (9)0.0366 (10)0.0341 (9)0.0071 (7)0.0090 (7)0.0029 (8)
C90.0337 (10)0.0350 (11)0.0450 (11)0.0009 (8)0.0092 (8)0.0085 (9)
C100.0366 (10)0.0520 (13)0.0420 (11)0.0004 (9)0.0128 (9)0.0154 (10)
C110.0320 (10)0.0557 (13)0.0347 (10)0.0041 (9)0.0108 (8)0.0024 (9)
C120.0319 (10)0.0413 (12)0.0428 (11)0.0037 (8)0.0085 (8)0.0018 (9)
C130.0318 (10)0.0407 (11)0.0394 (11)0.0008 (8)0.0136 (8)0.0081 (9)
Geometric parameters (Å, º) top
Cl1—C11.8078 (18)C6—C71.385 (3)
Cl2—C11.8154 (18)C6—H60.9500
O1—C11.359 (2)C7—H70.9500
O1—C21.418 (2)C8—C131.373 (3)
O2—C11.360 (2)C8—C91.381 (3)
O2—C81.415 (2)C9—C101.380 (3)
C2—C31.377 (3)C9—H90.9500
C2—C71.378 (3)C10—C111.382 (3)
C3—C41.386 (3)C10—H100.9500
C3—H30.9500C11—C121.384 (3)
C4—C51.383 (3)C11—H110.9500
C4—H40.9500C12—C131.386 (3)
C5—C61.383 (3)C12—H120.9500
C5—H50.9500C13—H130.9500
C1—O1—C2120.43 (13)C7—C6—H6119.7
C1—O2—C8119.92 (13)C2—C7—C6118.23 (18)
O1—C1—O2103.77 (13)C2—C7—H7120.9
O1—C1—Cl1112.41 (12)C6—C7—H7120.9
O2—C1—Cl1111.39 (13)C13—C8—C9121.85 (18)
O1—C1—Cl2112.36 (12)C13—C8—O2118.89 (16)
O2—C1—Cl2111.80 (12)C9—C8—O2118.98 (17)
Cl1—C1—Cl2105.29 (9)C10—C9—C8118.69 (19)
C3—C2—C7122.22 (17)C10—C9—H9120.7
C3—C2—O1118.32 (16)C8—C9—H9120.7
C7—C2—O1119.22 (16)C9—C10—C11120.60 (19)
C2—C3—C4118.85 (18)C9—C10—H10119.7
C2—C3—H3120.6C11—C10—H10119.7
C4—C3—H3120.6C10—C11—C12119.71 (19)
C5—C4—C3119.95 (18)C10—C11—H11120.1
C5—C4—H4120.0C12—C11—H11120.1
C3—C4—H4120.0C11—C12—C13120.33 (19)
C4—C5—C6120.11 (18)C11—C12—H12119.8
C4—C5—H5119.9C13—C12—H12119.8
C6—C5—H5119.9C8—C13—C12118.81 (18)
C5—C6—C7120.59 (18)C8—C13—H13120.6
C5—C6—H6119.7C12—C13—H13120.6
C2—O1—C1—O2177.16 (14)C3—C2—C7—C62.3 (3)
C2—O1—C1—Cl162.36 (19)O1—C2—C7—C6176.56 (16)
C2—O1—C1—Cl256.20 (19)C5—C6—C7—C20.6 (3)
C8—O2—C1—O1178.00 (15)C1—O2—C8—C1394.4 (2)
C8—O2—C1—Cl156.83 (19)C1—O2—C8—C991.6 (2)
C8—O2—C1—Cl260.67 (19)C13—C8—C9—C101.3 (3)
C1—O1—C2—C391.8 (2)O2—C8—C9—C10175.07 (16)
C1—O1—C2—C793.7 (2)C8—C9—C10—C110.2 (3)
C7—C2—C3—C42.4 (3)C9—C10—C11—C120.7 (3)
O1—C2—C3—C4176.73 (15)C10—C11—C12—C130.5 (3)
C2—C3—C4—C50.8 (3)C9—C8—C13—C121.4 (3)
C3—C4—C5—C60.9 (3)O2—C8—C13—C12175.20 (16)
C4—C5—C6—C71.0 (3)C11—C12—C13—C80.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1i0.952.813.723 (2)161
C10—H10···O1ii0.952.523.345 (3)145
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10Cl2O2
Mr269.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.8380 (4), 5.8973 (2), 14.2517 (4)
β (°) 114.751 (2)
V3)1208.85 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9193, 2766, 2138
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.08
No. of reflections2766
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
O1—C11.359 (2)O2—C11.360 (2)
O1—C1—O2103.77 (13)Cl1—C1—Cl2105.29 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1i0.952.813.723 (2)161
C10—H10···O1ii0.952.523.345 (3)145
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Peter Mayer for technical assistance.

References

First citationBromley, M. K., Gason, S. J., Jhingran, A. C., Looney, M. G. & Solomon, D. H. (1996). Aust. J. Chem. 49, 1261–1262.  CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationNarasimhamurthy, N., Manohar, H., Samuelson, A. G. & Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2937–2941.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds