organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three-centre hydrogen bonds in tri­phenyl­phosphine oxide–hydro­quinone (1/1)

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Física, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England
*Correspondence e-mail: rodimo26@yahoo.es

(Received 30 November 2007; accepted 17 December 2007; online 4 January 2008)

The title cocrystal, C18H15OP·C6H6O2, belongs to a series of mol­ecular systems based on triphenyl­phosphine P-oxide. The O atom of the oxide group acts as an acceptor for hydrogen bonds from OH groups of two hydro­quinone mol­ecules which lie on inversion centres [O⋯O = 2.7451 (17) and 2.681 (2) Å]. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds, forming a C21(8) chain which runs parallel to the [100] direction.

Related literature

For related literature, see: Al-Farhan (1992[Al-Farhan, K. A. (1992). J. Chem. Crystallogr. 22, 6, 687-692.]); Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Fuquen & Lechat (1992[Fuquen, R. M. & Lechat, J. R. (1992). Acta Cryst. C48, 1690-1692.]); Wallwork & Powell (1980[Wallwork, S. C. & Powell, H. M. (1980). J. Chem. Soc. Perkin Trans. Trans. 2, pp. 641-646.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15OP·C6H6O2

  • Mr = 388.38

  • Triclinic, [P \overline 1]

  • a = 8.927 (4) Å

  • b = 9.3576 (10) Å

  • c = 14.459 (4) Å

  • α = 71.157 (7)°

  • β = 73.826 (6)°

  • γ = 62.83 (2)°

  • V = 1004.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 150 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction, Wrocław, Poland.]) Tmin = 0.97, Tmax = 0.98

  • 10150 measured reflections

  • 3560 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.11

  • 3560 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H25⋯O1i 0.87 (2) 1.87 (2) 2.7451 (17) 175 (2)
O3—H26⋯O1i 0.87 (2) 1.82 (2) 2.681 (2) 170 (2)
C3—H3⋯O3ii 0.95 2.54 3.300 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound, C18H15OP.C6H6O2, belongs to a series of molecular systems based on triphenylphosphine P-oxide (TPPO) with diverse hydrogen-bond donors (Fuquen et al., 1992). In order to expand the crystallographic information of the TPPO complexes, to study the hydrogen bond character of the complex, and to analize its supramolecular arrangement, the structure determination of TPPO + hydroquinone (HQ), (I), system was undertaken. The free HQ molecule in the more stable form at room temperature (Wallwork & Powell, 1980) and the free TPPO molecule (Al-Farhan, 1992) can be taken as a reference systems to compare with the structural characteristics of (I). A displacement ellipsoid plot of the title hydrogen-bonded complex (I), showing the atomic numbering scheme is given in Fig. 1. The O1 atom of the P-oxide group of TPPO acts as an acceptor for hydrogen bonds from O—H groups of two hydroquinone molecules [O1···O2, 2.7451 (17), O1···O3, 2.681 (2) Å and O1···H25—O2, O1···H26—O3 angles of 175 (2) and 170 (2)° respectively, (Table 2)]. These two HQ molecules are each disposed about a centre of symmetry. The title molecule shows a H25—O1—H26 bond angle close to the right angle, seeking an orientation with the minor repulsion between the rings of the molecule. The presence of the three centre hydrogen bond at O1 induces the lengthening of P—O bond length from 1.479 (2) Å in free TPPO molecule (Al-Farhan, 1992) to 1.5016 (13) Å in (I). Other bond lengths and angles of TPPO and HQ remain similar in the complex. The title molecules of (I) are additionally linked by C—H···O hydrogen bonds. Indeed, atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to O3iv atom in the molecule at (x, 1 + y, z), so generating a C21(8) chain (Etter, 1990) which is running parallel to [100] direction (Fig. 2, Supp.material). Other significant intermolecular hydrogen bonds are not observed in the crystalline structure.

Related literature top

For related literature, see: Al-Farhan (1992); Etter (1990); Fuquen & Lechat (1992); Wallwork & Powell (1980).

Experimental top

Crystals of the title compound (I), were obtained by slow evaporation of equimolecular quantities of HQ (1.826 g, 0.017 mol) and TPPO (4.725 g) in 150 ml of dry acetonitrile. After three days, colourless plates of a good quality suitable for X-ray analysis were obtained. Its melting point is 425 (1) K.

Refinement top

All non-hydrogen atoms were identified by direct methods and the positions of all the hydrogen atoms were obtained from the use of difference Fourier maps. In the final refinement, all hydrogen atoms were constrained to geometrically sensible positions with a riding model (SHELX97), C—H= 0.95 Å, and Uiso(H)= 1.5Ueq(C), apart from H25 and H26, which were allowed to refine freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Ring H-atoms were omitted for clarity. The dashed line indicates a hydrogen bond. [Symmetry code: (i) 1 + x, y, z]
[Figure 2] Fig. 2. View of the crystal structure of (I), showing the O—H···O and C—H···O interactions along [100] direction. [Symmetry codes: (iv) x, 1 + y, z (v) 1 + x, 1 + y, z]
triphenylphosphine oxide–hydroquinone (1/1) top
Crystal data top
C18H15OP·C6H6O2Z = 2
Mr = 388.38F(000) = 408
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Melting point: 425(1) K
a = 8.927 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3576 (10) ÅCell parameters from 6084 reflections
c = 14.459 (4) Åθ = 2.5–28.6°
α = 71.157 (7)°µ = 0.16 mm1
β = 73.826 (6)°T = 150 K
γ = 62.83 (2)°Plate, colourless
V = 1004.6 (6) Å30.20 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 15.975 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and π scansh = 1010
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006)]
k = 1111
Tmin = 0.97, Tmax = 0.98l = 1417
10150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.182P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H15OP·C6H6O2γ = 62.83 (2)°
Mr = 388.38V = 1004.6 (6) Å3
Triclinic, P1Z = 2
a = 8.927 (4) ÅMo Kα radiation
b = 9.3576 (10) ŵ = 0.16 mm1
c = 14.459 (4) ÅT = 150 K
α = 71.157 (7)°0.20 × 0.20 × 0.10 mm
β = 73.826 (6)°
Data collection top
Oxford Diffraction Gemini
diffractometer
3560 independent reflections
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006)]
2837 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.025
10150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.36 e Å3
3560 reflectionsΔρmin = 0.32 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.95138 (5)0.39823 (5)0.27946 (3)0.01905 (11)
O11.12889 (12)0.37744 (12)0.27829 (7)0.0236 (2)
O20.31558 (16)0.56334 (14)0.18170 (8)0.0330 (3)
O30.43737 (16)0.13741 (16)0.30698 (8)0.0390 (3)
C190.40534 (19)0.52905 (18)0.09190 (10)0.0225 (3)
C130.95218 (18)0.23915 (17)0.23485 (10)0.0198 (3)
C181.0897 (2)0.08595 (18)0.24493 (11)0.0265 (4)
H181.18110.06700.27500.040*
C240.3343 (2)0.09996 (18)0.48323 (11)0.0269 (4)
H240.22030.16850.47190.040*
C210.59840 (19)0.58783 (18)0.05380 (11)0.0240 (3)
H210.66540.64870.09050.036*
C100.6658 (2)0.37566 (19)0.59682 (11)0.0277 (4)
H100.60910.37010.66320.042*
C140.81782 (19)0.26512 (19)0.19154 (11)0.0254 (3)
H140.72300.36880.18480.038*
C10.84087 (18)0.59192 (17)0.19937 (10)0.0195 (3)
C80.7437 (2)0.29020 (19)0.44432 (11)0.0274 (4)
H80.74010.22580.40650.041*
C70.83224 (18)0.39133 (17)0.40226 (10)0.0200 (3)
C60.9123 (2)0.61763 (18)0.09972 (11)0.0250 (3)
H61.01290.53280.07650.037*
C30.6205 (2)0.86657 (19)0.16682 (12)0.0303 (4)
H30.52070.95240.18970.046*
C200.50465 (19)0.61583 (18)0.03765 (11)0.0237 (3)
H200.50860.69530.06330.035*
C90.6605 (2)0.2829 (2)0.54123 (11)0.0310 (4)
H90.59980.21400.56950.047*
C160.9609 (2)0.01175 (19)0.16781 (12)0.0306 (4)
H160.96420.09720.14430.046*
C50.8378 (2)0.76576 (19)0.03425 (11)0.0281 (4)
H50.88660.78210.03360.042*
C120.8361 (2)0.48507 (19)0.45913 (11)0.0273 (4)
H120.89580.55500.43120.041*
C150.8228 (2)0.1395 (2)0.15826 (12)0.0308 (4)
H150.73110.15720.12880.046*
C171.0939 (2)0.03884 (19)0.21136 (12)0.0310 (4)
H171.18810.14300.21830.046*
C220.6308 (2)0.02875 (18)0.42058 (11)0.0262 (4)
H220.72070.04890.36630.039*
C20.69447 (19)0.71779 (18)0.23265 (11)0.0247 (3)
H20.64500.70210.30040.037*
C230.4649 (2)0.07154 (18)0.40370 (11)0.0258 (4)
C110.7535 (2)0.4765 (2)0.55590 (11)0.0306 (4)
H110.75700.54010.59430.046*
C40.6920 (2)0.88961 (19)0.06822 (12)0.0284 (4)
H40.64070.99120.02340.043*
H250.251 (3)0.509 (3)0.2108 (15)0.059 (6)*
H260.332 (3)0.209 (3)0.3043 (14)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0199 (2)0.0200 (2)0.0180 (2)0.00858 (16)0.00232 (15)0.00511 (15)
O10.0217 (6)0.0269 (6)0.0236 (6)0.0118 (5)0.0035 (4)0.0044 (4)
O20.0419 (7)0.0360 (7)0.0268 (6)0.0243 (6)0.0089 (5)0.0137 (5)
O30.0303 (7)0.0430 (7)0.0287 (7)0.0009 (6)0.0079 (5)0.0079 (5)
C190.0222 (8)0.0216 (7)0.0213 (8)0.0071 (7)0.0030 (6)0.0050 (6)
C130.0221 (8)0.0213 (7)0.0157 (7)0.0094 (6)0.0019 (6)0.0036 (6)
C180.0281 (9)0.0236 (8)0.0263 (8)0.0063 (7)0.0097 (7)0.0056 (6)
C240.0214 (8)0.0224 (8)0.0357 (9)0.0062 (7)0.0060 (7)0.0077 (7)
C210.0226 (8)0.0233 (8)0.0275 (9)0.0122 (7)0.0038 (7)0.0035 (6)
C100.0300 (9)0.0298 (9)0.0183 (8)0.0113 (7)0.0001 (7)0.0036 (7)
C140.0242 (9)0.0232 (8)0.0288 (9)0.0076 (7)0.0063 (7)0.0071 (6)
C10.0211 (8)0.0205 (7)0.0210 (8)0.0111 (6)0.0025 (6)0.0064 (6)
C80.0330 (9)0.0284 (8)0.0258 (9)0.0170 (7)0.0010 (7)0.0103 (7)
C70.0203 (8)0.0191 (7)0.0199 (8)0.0075 (6)0.0044 (6)0.0032 (6)
C60.0261 (9)0.0241 (8)0.0237 (8)0.0086 (7)0.0023 (7)0.0077 (6)
C30.0247 (9)0.0232 (8)0.0414 (10)0.0052 (7)0.0054 (7)0.0119 (7)
C200.0259 (8)0.0205 (7)0.0268 (8)0.0099 (7)0.0053 (7)0.0062 (6)
C90.0366 (10)0.0299 (9)0.0288 (9)0.0211 (8)0.0051 (7)0.0066 (7)
C160.0424 (10)0.0259 (9)0.0303 (9)0.0175 (8)0.0048 (8)0.0099 (7)
C50.0356 (10)0.0302 (9)0.0209 (8)0.0169 (8)0.0047 (7)0.0032 (7)
C120.0335 (9)0.0325 (9)0.0238 (8)0.0206 (8)0.0017 (7)0.0075 (7)
C150.0324 (9)0.0339 (9)0.0339 (9)0.0162 (8)0.0090 (7)0.0099 (7)
C170.0349 (10)0.0202 (8)0.0325 (9)0.0047 (7)0.0080 (8)0.0066 (7)
C220.0235 (8)0.0236 (8)0.0297 (9)0.0089 (7)0.0003 (7)0.0084 (7)
C20.0220 (8)0.0256 (8)0.0260 (8)0.0095 (7)0.0001 (7)0.0086 (7)
C230.0281 (9)0.0205 (8)0.0288 (9)0.0088 (7)0.0064 (7)0.0055 (6)
C110.0384 (10)0.0366 (9)0.0242 (9)0.0194 (8)0.0024 (7)0.0118 (7)
C40.0323 (9)0.0207 (8)0.0350 (10)0.0111 (7)0.0154 (8)0.0007 (7)
Geometric parameters (Å, º) top
P1—O11.5016 (13)C8—C91.387 (2)
P1—C71.7957 (15)C8—C71.391 (2)
P1—C131.8000 (14)C8—H80.9500
P1—C11.8020 (15)C7—C121.399 (2)
O2—C191.3732 (18)C6—C51.386 (2)
O2—H250.87 (2)C6—H60.9500
O3—C231.3756 (19)C3—C41.381 (2)
O3—H260.87 (2)C3—C21.391 (2)
C19—C201.385 (2)C3—H30.9500
C19—C21i1.391 (2)C20—H200.9500
C13—C181.393 (2)C9—H90.9500
C13—C141.394 (2)C16—C171.382 (2)
C18—C171.384 (2)C16—C151.384 (2)
C18—H180.9500C16—H160.9500
C24—C231.386 (2)C5—C41.383 (2)
C24—C22ii1.389 (2)C5—H50.9500
C24—H240.9500C12—C111.384 (2)
C21—C201.387 (2)C12—H120.9500
C21—C19i1.391 (2)C15—H150.9500
C21—H210.9500C17—H170.9500
C10—C111.382 (2)C22—C231.384 (2)
C10—C91.382 (2)C22—C24ii1.389 (2)
C10—H100.9500C22—H220.9500
C14—C151.386 (2)C2—H20.9500
C14—H140.9500C11—H110.9500
C1—C21.392 (2)C4—H40.9500
C1—C61.395 (2)
O1—P1—C7111.26 (6)C1—C6—H6119.7
O1—P1—C13111.76 (7)C4—C3—C2120.06 (15)
C7—P1—C13107.64 (7)C4—C3—H3120.0
O1—P1—C1110.35 (7)C2—C3—H3120.0
C7—P1—C1109.06 (7)C19—C20—C21120.68 (14)
C13—P1—C1106.61 (7)C19—C20—H20119.7
C19—O2—H25113.3 (14)C21—C20—H20119.7
C23—O3—H26110.4 (13)C10—C9—C8120.17 (15)
O2—C19—C20117.57 (13)C10—C9—H9119.9
O2—C19—C21i123.33 (14)C8—C9—H9119.9
C20—C19—C21i119.10 (14)C17—C16—C15120.20 (14)
C18—C13—C14119.35 (14)C17—C16—H16119.9
C18—C13—P1119.06 (11)C15—C16—H16119.9
C14—C13—P1121.58 (11)C4—C5—C6119.69 (15)
C17—C18—C13120.39 (15)C4—C5—H5120.2
C17—C18—H18119.8C6—C5—H5120.2
C13—C18—H18119.8C11—C12—C7120.35 (14)
C23—C24—C22ii120.31 (15)C11—C12—H12119.8
C23—C24—H24119.8C7—C12—H12119.8
C22ii—C24—H24119.8C16—C15—C14120.20 (15)
C20—C21—C19i120.21 (14)C16—C15—H15119.9
C20—C21—H21119.9C14—C15—H15119.9
C19i—C21—H21119.9C16—C17—C18119.93 (15)
C11—C10—C9120.09 (14)C16—C17—H17120.0
C11—C10—H10120.0C18—C17—H17120.0
C9—C10—H10120.0C23—C22—C24ii120.06 (14)
C15—C14—C13119.93 (14)C23—C22—H22120.0
C15—C14—H14120.0C24ii—C22—H22120.0
C13—C14—H14120.0C3—C2—C1120.11 (14)
C2—C1—C6119.13 (14)C3—C2—H2119.9
C2—C1—P1123.52 (11)C1—C2—H2119.9
C6—C1—P1117.28 (11)O3—C23—C22117.62 (14)
C9—C8—C7120.29 (14)O3—C23—C24122.74 (14)
C9—C8—H8119.9C22—C23—C24119.63 (14)
C7—C8—H8119.9C10—C11—C12120.10 (14)
C8—C7—C12119.00 (14)C10—C11—H11120.0
C8—C7—P1122.40 (11)C12—C11—H11120.0
C12—C7—P1118.52 (11)C3—C4—C5120.41 (14)
C5—C6—C1120.60 (14)C3—C4—H4119.8
C5—C6—H6119.7C5—C4—H4119.8
O1—P1—C13—C1827.30 (14)P1—C1—C6—C5177.79 (12)
C7—P1—C13—C1895.15 (13)O2—C19—C20—C21179.84 (13)
C1—P1—C13—C18147.95 (12)C21i—C19—C20—C210.5 (2)
O1—P1—C13—C14153.41 (12)C19i—C21—C20—C190.5 (2)
C7—P1—C13—C1484.14 (13)C11—C10—C9—C80.2 (2)
C1—P1—C13—C1432.76 (14)C7—C8—C9—C100.3 (2)
C14—C13—C18—C170.7 (2)C1—C6—C5—C40.5 (2)
P1—C13—C18—C17179.98 (12)C8—C7—C12—C110.3 (2)
C18—C13—C14—C150.6 (2)P1—C7—C12—C11176.59 (12)
P1—C13—C14—C15179.84 (12)C17—C16—C15—C140.6 (2)
O1—P1—C1—C2117.60 (13)C13—C14—C15—C160.1 (2)
C7—P1—C1—C24.90 (15)C15—C16—C17—C180.5 (2)
C13—P1—C1—C2120.85 (13)C13—C18—C17—C160.2 (2)
O1—P1—C1—C659.36 (13)C4—C3—C2—C10.1 (2)
C7—P1—C1—C6178.14 (11)C6—C1—C2—C30.4 (2)
C13—P1—C1—C662.18 (13)P1—C1—C2—C3177.30 (11)
C9—C8—C7—C120.0 (2)C24ii—C22—C23—O3179.31 (14)
C9—C8—C7—P1176.74 (12)C24ii—C22—C23—C240.2 (2)
O1—P1—C7—C8129.66 (13)C22ii—C24—C23—O3179.27 (14)
C13—P1—C7—C86.90 (15)C22ii—C24—C23—C220.2 (2)
C1—P1—C7—C8108.39 (13)C9—C10—C11—C120.0 (2)
O1—P1—C7—C1247.07 (13)C7—C12—C11—C100.3 (2)
C13—P1—C7—C12169.82 (12)C2—C3—C4—C50.4 (2)
C1—P1—C7—C1274.88 (13)C6—C5—C4—C30.1 (2)
C2—C1—C6—C50.7 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H25···O1iii0.87 (2)1.87 (2)2.7451 (17)175 (2)
O3—H26···O1iii0.87 (2)1.82 (2)2.681 (2)170 (2)
C3—H3···O3iv0.952.543.300 (2)137
Symmetry codes: (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H15OP·C6H6O2
Mr388.38
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.927 (4), 9.3576 (10), 14.459 (4)
α, β, γ (°)71.157 (7), 73.826 (6), 62.83 (2)
V3)1004.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006)]
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
10150, 3560, 2837
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.11
No. of reflections3560
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
P1—O11.5016 (13)P1—C11.8020 (15)
P1—C71.7957 (15)O2—C191.3732 (18)
P1—C131.8000 (14)O3—C231.3756 (19)
O1—P1—C7111.26 (6)O1—P1—C1110.35 (7)
O1—P1—C13111.76 (7)
O1—P1—C13—C14153.41 (12)O1—P1—C7—C8129.66 (13)
O1—P1—C1—C2117.60 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H25···O1i0.87 (2)1.87 (2)2.7451 (17)175 (2)
O3—H26···O1i0.87 (2)1.82 (2)2.681 (2)170 (2)
C3—H3···O3ii0.952.543.300 (2)137.3
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

We are grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of a licence for the Cambridge Structural Database System (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and JVN also acknowledge the Universidad del Valle, Colombia for partial financial support.

References

First citationAl-Farhan, K. A. (1992). J. Chem. Crystallogr. 22, 6, 687–692.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFuquen, R. M. & Lechat, J. R. (1992). Acta Cryst. C48, 1690–1692.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.31.5. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWallwork, S. C. & Powell, H. M. (1980). J. Chem. Soc. Perkin Trans. Trans. 2, pp. 641–646.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds