organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(Meth­oxy­carbon­yl)benz­yl]tri­phenyl­phospho­nium bromide hemihydrate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: shameed@qau.edu.pk

(Received 30 November 2007; accepted 3 January 2008; online 11 January 2008)

In the crystal structure of the title compound, C27H24O2P+·Br·0.5H2O, there are inter­molecular O—H⋯Br hydrogen bonds between the H atoms of the water of crystallization and the bromide anions. The three phenyl rings of the triphenyl­phosphonium moiety are at angles of 59.73 (15), 79.15 (14) and 82.81 (17)° with the C/P/C planes.

Related literature

For related literature, see: Ahmed et al. (1996[Ahmed, S. Z., Glidewell, C. & Ferguson, G. (1996). Acta Cryst. C52, 1634-1636.]); Harcken & Martin (2001[Harcken, C. & Martin, S. F. (2001). Org. Lett. 3, 3591-3593.]); Kojima et al. (2002[Kojima, S., Sugino, M., Matsukawa, S., Nakamoto, M. & Akiba, K. (2002). J. Am. Chem. Soc. 124, 7674-7675.]); McDonald & Campbell (1959[McDonald, R. N. & Campbell, T. W. (1959). J. Org. Chem. 24, 1969-1975.]); Nassar et al. (2004[Nassar, R., Noll, B. C. & Henderson, K. W. (2004). Polyhedron, 23, 2499-2506.]); Phillips et al. (2002[Phillips, G., Fevig, T. L., Lau, P. H., Klemm, G. H., Mao, M. K., Ma, C., Gloeckner, J. A. & Clark, A. S. (2002). Org. Process. Res. Dev. 6, 357-366.]); Tanaka et al. (2003[Tanaka, K., Hata, T., Hara, H. & Katsumura, S. (2003). Tetrahedron, 59, 4945-4952.]); Wittig & Schöllkopf (1954[Wittig, G. & Schöllkopf, U. (1954). Chem. Ber. 87, 1318-1330.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24O2P+·Br·0.5H2O

  • Mr = 500.35

  • Monoclinic, C 2/c

  • a = 21.017 (8) Å

  • b = 14.045 (5) Å

  • c = 19.868 (7) Å

  • β = 126.107 (4)°

  • V = 4738 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 123 (2) K

  • 0.40 × 0.31 × 0.22 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: integration (ABSCOR; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.404, Tmax = 0.520

  • 18847 measured reflections

  • 5425 independent reflections

  • 5022 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.079

  • S = 1.15

  • 5425 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯Br1 1.03 (4) 2.22 (4) 3.2308 (17) 169 (3)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. Version 2.0. MSC, The Woodlands, Texas USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

One of the most useful methods for the synthesis of alkenes with control over the stereoselectivity is the well known Wittig reaction (Wittig & Schöllkopf, 1954). It is mainly due to the stereoselectivity of the Wittig reagent that not only its use in the synthesis (Kojima et al., 2002; Phillips et al., 2002; Harcken & Martin, 2001) has not seen a decline but new and improved methods for its synthesis are being constantly developed (Nassar et al., 2004; Tanaka et al., 2003; Kojima et al., 2002). The title compound, (I), is an intermediate in the synthesis of (E)-hydroxyalkyl 4-(4-substituted styryl)benzoate as a part of the project to synthesize ligands for polymeric liquid crystals. Here, we are going to present the crystal structure of the title compound (I). All the geometric parameters are in agreement with the the similar type of studies made by (Ahmed et al., 1996) There are standard electrostatic interactions between the triphenyl-(4-methylcarboxy)benzylphosphonium cations and the bromide anions. It is confirmed that the compound (I) is an ion pair (Fig. 1), with a distance of 4.382 (2)Å between the P+ and Br- centres.

Related literature top

For related literature, see: Ahmed et al. (1996); Harcken & Martin (2001); Kojima et al. (2002); McDonald & Campbell (1959); Nassar et al. (2004); Phillips et al. (2002); Tanaka et al. (2003); Wittig & Schöllkopf (1954).

Experimental top

The triphenyl-(4-methylcarboxy)benzylphosphonium bromide (I) was synthesized following a method reported in the literature (Mcdonald & Campbell, 1959).A mixture of methyl 4-(bromomethyl)benzoate 2.5 g, 0.01 mol) and triphenylphosphine (2.43 g, 0.01 mol) in 40 ml of toluene was heated under reflux for 3 hr. After cooling to room temperature the salt was filtered, washed with ether and dried under reduced pressure.Yield: 81%, m.p: 245–248°C, Rf = 0.11 (n-Hexane: ethylacetate 7:3). IR (KBr, νmax, cm-1): 3010, 2926, 2830, 1719, 1605, 786. 1H-NMR (CDCl3): δ 3.87 (3H, s), 5.65 (2H, d, J = 15 Hz), 7.70 (17H, m), 8.04 (2H, d, J = 8.1 Hz). 13C-NMR (75 MHz, CDCl3):δ 52.23, 30.58 (d, J = 186 Hz), 117.56 (d, J = 342 Hz),129.70 (d, J = 12 Hz), 129.87 (d, J = 18 Hz), 130.165 (d, J = 51 Hz), 131.73 (d, J = 21 Hz), 132.80 (d, J = 33 Hz), 134.45 (d, J = 36 Hz), 166.54.

Refinement top

H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[4-(Methoxycarbonyl)benzyl]triphenylphosphonium bromide hemihydrate top
Crystal data top
C27H24O2P+·Br·0.5H2OF(000) = 2056
Mr = 500.35Dx = 1.403 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 7012 reflections
a = 21.017 (8) Åθ = 3.1–27.5°
b = 14.045 (5) ŵ = 1.83 mm1
c = 19.868 (7) ÅT = 123 K
β = 126.107 (4)°Block, colorless
V = 4738 (3) Å30.40 × 0.31 × 0.22 mm
Z = 8
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
5022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: integration
(ABSCOR; Higashi, 1999)
h = 2725
Tmin = 0.404, Tmax = 0.520k = 1817
18847 measured reflectionsl = 1825
5425 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0133P)2 + 10.1118P]
where P = (Fo2 + 2Fc2)/3
5425 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C27H24O2P+·Br·0.5H2OV = 4738 (3) Å3
Mr = 500.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.017 (8) ŵ = 1.83 mm1
b = 14.045 (5) ÅT = 123 K
c = 19.868 (7) Å0.40 × 0.31 × 0.22 mm
β = 126.107 (4)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
5425 independent reflections
Absorption correction: integration
(ABSCOR; Higashi, 1999)
5022 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.520Rint = 0.038
18847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0133P)2 + 10.1118P]
where P = (Fo2 + 2Fc2)/3
5425 reflectionsΔρmax = 0.51 e Å3
290 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31029 (3)0.44471 (4)0.32117 (3)0.01545 (12)
C10.41411 (12)0.41713 (15)0.38823 (13)0.0174 (4)
H1A0.44240.46550.37890.021*
H1B0.43240.42340.44680.021*
C20.43759 (12)0.32001 (16)0.37752 (12)0.0181 (4)
C30.42000 (13)0.23839 (16)0.40364 (13)0.0206 (5)
H30.39090.24380.42610.025*
C40.44456 (13)0.14960 (17)0.39714 (14)0.0222 (5)
H40.43140.09450.41430.027*
C50.48845 (12)0.14061 (16)0.36557 (13)0.0205 (5)
C60.50870 (13)0.22217 (18)0.34252 (14)0.0249 (5)
H60.54080.21700.32350.030*
C70.48255 (13)0.31103 (18)0.34700 (14)0.0241 (5)
H70.49530.36600.32920.029*
C80.51658 (13)0.04628 (18)0.35787 (14)0.0260 (5)
O10.56546 (10)0.03619 (14)0.34485 (11)0.0341 (4)
O20.48183 (10)0.02626 (12)0.36867 (12)0.0343 (4)
C90.50683 (18)0.1213 (2)0.3647 (2)0.0495 (8)
H9A0.49220.13290.30850.074*
H9B0.48110.16850.37760.074*
H9C0.56410.12660.40520.074*
C100.27533 (12)0.45605 (15)0.21423 (13)0.0167 (4)
C110.19410 (13)0.45949 (17)0.15136 (13)0.0217 (5)
H110.15780.45230.16480.026*
C120.16704 (14)0.47353 (17)0.06923 (14)0.0252 (5)
H120.11200.47620.02650.030*
C130.21980 (14)0.48367 (16)0.04915 (14)0.0240 (5)
H130.20080.49290.00720.029*
C140.30000 (14)0.48039 (17)0.11111 (14)0.0243 (5)
H140.33610.48750.09740.029*
C150.32787 (13)0.46655 (16)0.19402 (13)0.0212 (5)
H150.38300.46430.23660.025*
C160.29724 (13)0.55555 (15)0.35705 (13)0.0182 (4)
C170.22172 (14)0.58176 (18)0.33081 (17)0.0311 (6)
H170.17800.54190.29390.037*
C180.21096 (16)0.66619 (19)0.35887 (18)0.0363 (6)
H180.15960.68420.34090.044*
C190.27431 (15)0.72433 (17)0.41278 (15)0.0280 (5)
H190.26650.78160.43250.034*
C200.34886 (14)0.69949 (17)0.43800 (14)0.0253 (5)
H200.39210.74020.47440.030*
C210.36103 (13)0.61531 (17)0.41050 (13)0.0221 (5)
H210.41240.59840.42790.027*
C220.25177 (12)0.35735 (15)0.32766 (13)0.0171 (4)
C230.24544 (13)0.36231 (17)0.39383 (14)0.0223 (5)
H230.27340.40970.43560.027*
C240.19816 (14)0.29762 (18)0.39790 (15)0.0265 (5)
H240.19330.30110.44240.032*
C250.15793 (14)0.22790 (18)0.33766 (16)0.0281 (5)
H250.12480.18460.34040.034*
C260.16576 (15)0.22106 (18)0.27322 (16)0.0287 (5)
H260.13880.17250.23240.034*
C270.21322 (13)0.28556 (16)0.26844 (14)0.0230 (5)
H270.21930.28060.22480.028*
Br10.456153 (14)0.381335 (18)0.588418 (14)0.02564 (7)
O30.50000.49982 (19)0.75000.0300 (5)
H3O0.485 (2)0.455 (3)0.702 (2)0.090 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0136 (2)0.0170 (3)0.0155 (2)0.0005 (2)0.0084 (2)0.0006 (2)
C10.0142 (9)0.0186 (10)0.0169 (10)0.0006 (8)0.0077 (8)0.0010 (8)
C20.0129 (9)0.0227 (11)0.0153 (9)0.0020 (8)0.0064 (8)0.0026 (8)
C30.0206 (11)0.0213 (11)0.0230 (11)0.0003 (9)0.0146 (9)0.0007 (9)
C40.0208 (11)0.0208 (11)0.0260 (11)0.0012 (9)0.0144 (10)0.0006 (9)
C50.0146 (10)0.0261 (12)0.0147 (10)0.0029 (8)0.0053 (8)0.0020 (8)
C60.0200 (11)0.0386 (14)0.0201 (10)0.0080 (10)0.0140 (9)0.0060 (10)
C70.0208 (11)0.0294 (13)0.0227 (11)0.0054 (10)0.0132 (9)0.0101 (10)
C80.0173 (11)0.0318 (13)0.0184 (11)0.0062 (10)0.0047 (9)0.0048 (9)
O10.0263 (9)0.0428 (11)0.0333 (9)0.0090 (8)0.0176 (8)0.0058 (8)
O20.0256 (9)0.0222 (9)0.0494 (11)0.0018 (7)0.0189 (9)0.0084 (8)
C90.0380 (16)0.0257 (14)0.078 (2)0.0020 (12)0.0304 (16)0.0167 (15)
C100.0177 (10)0.0144 (10)0.0174 (10)0.0010 (8)0.0100 (9)0.0024 (8)
C110.0197 (11)0.0266 (12)0.0195 (10)0.0039 (9)0.0121 (9)0.0022 (9)
C120.0204 (11)0.0298 (13)0.0185 (10)0.0031 (10)0.0077 (9)0.0019 (9)
C130.0305 (12)0.0228 (12)0.0183 (10)0.0019 (10)0.0143 (10)0.0027 (9)
C140.0291 (12)0.0274 (12)0.0231 (11)0.0023 (10)0.0190 (10)0.0021 (9)
C150.0185 (10)0.0236 (12)0.0204 (10)0.0018 (9)0.0109 (9)0.0011 (9)
C160.0186 (10)0.0171 (10)0.0188 (10)0.0007 (8)0.0110 (9)0.0012 (8)
C170.0184 (11)0.0266 (13)0.0435 (15)0.0029 (10)0.0156 (11)0.0082 (11)
C180.0274 (13)0.0282 (14)0.0588 (18)0.0024 (11)0.0283 (13)0.0050 (12)
C190.0387 (14)0.0191 (12)0.0342 (13)0.0025 (10)0.0258 (12)0.0011 (10)
C200.0260 (12)0.0220 (12)0.0203 (11)0.0020 (9)0.0094 (10)0.0039 (9)
C210.0181 (10)0.0233 (11)0.0205 (10)0.0016 (9)0.0088 (9)0.0008 (9)
C220.0144 (10)0.0180 (11)0.0182 (10)0.0003 (8)0.0092 (8)0.0013 (8)
C230.0215 (11)0.0256 (12)0.0212 (11)0.0001 (9)0.0134 (9)0.0005 (9)
C240.0284 (12)0.0319 (13)0.0268 (12)0.0044 (10)0.0205 (10)0.0072 (10)
C250.0282 (12)0.0236 (12)0.0413 (14)0.0011 (10)0.0255 (12)0.0058 (10)
C260.0308 (13)0.0243 (12)0.0350 (13)0.0084 (10)0.0217 (11)0.0059 (10)
C270.0258 (12)0.0223 (12)0.0238 (11)0.0034 (9)0.0162 (10)0.0020 (9)
Br10.02436 (12)0.03282 (14)0.02411 (12)0.00150 (10)0.01670 (10)0.00167 (10)
O30.0276 (13)0.0313 (14)0.0331 (13)0.0000.0190 (11)0.000
Geometric parameters (Å, º) top
P1—C221.795 (2)C12—H120.9500
P1—C161.799 (2)C13—C141.383 (3)
P1—C101.800 (2)C13—H130.9500
P1—C11.806 (2)C14—C151.399 (3)
C1—C21.508 (3)C14—H140.9500
C1—H1A0.9900C15—H150.9500
C1—H1B0.9900C16—C171.397 (3)
C2—C31.395 (3)C16—C211.397 (3)
C2—C71.397 (3)C17—C181.384 (4)
C3—C41.385 (3)C17—H170.9500
C3—H30.9500C18—C191.381 (4)
C4—C51.393 (3)C18—H180.9500
C4—H40.9500C19—C201.379 (4)
C5—C61.390 (3)C19—H190.9500
C5—C81.495 (3)C20—C211.388 (3)
C6—C71.388 (3)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—H70.9500C22—C271.391 (3)
C8—O11.207 (3)C22—C231.399 (3)
C8—O21.343 (3)C23—C241.384 (3)
O2—C91.454 (3)C23—H230.9500
C9—H9A0.9800C24—C251.383 (4)
C9—H9B0.9800C24—H240.9500
C9—H9C0.9800C25—C261.387 (4)
C10—C151.388 (3)C25—H250.9500
C10—C111.401 (3)C26—C271.392 (3)
C11—C121.390 (3)C26—H260.9500
C11—H110.9500C27—H270.9500
C12—C131.389 (3)O3—H3O1.03 (4)
C22—P1—C16107.00 (11)C13—C12—H12119.7
C22—P1—C10108.96 (10)C11—C12—H12119.7
C16—P1—C10109.85 (10)C14—C13—C12120.1 (2)
C22—P1—C1112.43 (10)C14—C13—H13120.0
C16—P1—C1107.06 (10)C12—C13—H13120.0
C10—P1—C1111.41 (10)C13—C14—C15119.8 (2)
C2—C1—P1116.34 (15)C13—C14—H14120.1
C2—C1—H1A108.2C15—C14—H14120.1
P1—C1—H1A108.2C10—C15—C14120.2 (2)
C2—C1—H1B108.2C10—C15—H15119.9
P1—C1—H1B108.2C14—C15—H15119.9
H1A—C1—H1B107.4C17—C16—C21119.7 (2)
C3—C2—C7118.9 (2)C17—C16—P1119.02 (17)
C3—C2—C1120.7 (2)C21—C16—P1121.27 (17)
C7—C2—C1120.3 (2)C18—C17—C16119.7 (2)
C4—C3—C2120.7 (2)C18—C17—H17120.2
C4—C3—H3119.7C16—C17—H17120.2
C2—C3—H3119.7C19—C18—C17120.5 (2)
C3—C4—C5120.4 (2)C19—C18—H18119.8
C3—C4—H4119.8C17—C18—H18119.8
C5—C4—H4119.8C20—C19—C18120.1 (2)
C6—C5—C4119.1 (2)C20—C19—H19119.9
C6—C5—C8118.7 (2)C18—C19—H19119.9
C4—C5—C8122.2 (2)C19—C20—C21120.4 (2)
C7—C6—C5120.7 (2)C19—C20—H20119.8
C7—C6—H6119.7C21—C20—H20119.8
C5—C6—H6119.7C20—C21—C16119.6 (2)
C6—C7—C2120.2 (2)C20—C21—H21120.2
C6—C7—H7119.9C16—C21—H21120.2
C2—C7—H7119.9C27—C22—C23120.0 (2)
O1—C8—O2123.9 (2)C27—C22—P1121.14 (17)
O1—C8—C5124.3 (2)C23—C22—P1118.82 (16)
O2—C8—C5111.8 (2)C24—C23—C22119.4 (2)
C8—O2—C9116.1 (2)C24—C23—H23120.3
O2—C9—H9A109.5C22—C23—H23120.3
O2—C9—H9B109.5C25—C24—C23120.5 (2)
H9A—C9—H9B109.5C25—C24—H24119.7
O2—C9—H9C109.5C23—C24—H24119.7
H9A—C9—H9C109.5C24—C25—C26120.2 (2)
H9B—C9—H9C109.5C24—C25—H25119.9
C15—C10—C11119.9 (2)C26—C25—H25119.9
C15—C10—P1120.68 (16)C25—C26—C27119.8 (2)
C11—C10—P1119.38 (17)C25—C26—H26120.1
C12—C11—C10119.5 (2)C27—C26—H26120.1
C12—C11—H11120.3C22—C27—C26119.9 (2)
C10—C11—H11120.3C22—C27—H27120.1
C13—C12—C11120.5 (2)C26—C27—H27120.1
C22—P1—C1—C254.37 (19)C11—C10—C15—C140.1 (3)
C16—P1—C1—C2171.59 (16)P1—C10—C15—C14176.59 (18)
C10—P1—C1—C268.29 (19)C13—C14—C15—C100.0 (4)
P1—C1—C2—C371.4 (2)C22—P1—C16—C1743.1 (2)
P1—C1—C2—C7113.4 (2)C10—P1—C16—C1775.1 (2)
C7—C2—C3—C41.9 (3)C1—P1—C16—C17163.83 (19)
C1—C2—C3—C4177.2 (2)C22—P1—C16—C21136.78 (19)
C2—C3—C4—C51.1 (3)C10—P1—C16—C21105.09 (19)
C3—C4—C5—C61.5 (3)C1—P1—C16—C2116.0 (2)
C3—C4—C5—C8179.7 (2)C21—C16—C17—C180.8 (4)
C4—C5—C6—C73.1 (3)P1—C16—C17—C18179.1 (2)
C8—C5—C6—C7178.7 (2)C16—C17—C18—C190.3 (4)
C5—C6—C7—C22.2 (3)C17—C18—C19—C201.2 (4)
C3—C2—C7—C60.3 (3)C18—C19—C20—C211.0 (4)
C1—C2—C7—C6175.6 (2)C19—C20—C21—C160.1 (4)
C6—C5—C8—O111.6 (3)C17—C16—C21—C201.0 (3)
C4—C5—C8—O1166.6 (2)P1—C16—C21—C20178.90 (17)
C6—C5—C8—O2169.47 (19)C16—P1—C22—C27144.04 (18)
C4—C5—C8—O212.3 (3)C10—P1—C22—C2725.3 (2)
O1—C8—O2—C90.5 (3)C1—P1—C22—C2798.69 (19)
C5—C8—O2—C9178.4 (2)C16—P1—C22—C2336.1 (2)
C22—P1—C10—C15140.05 (18)C10—P1—C22—C23154.78 (17)
C16—P1—C10—C15103.04 (19)C1—P1—C22—C2381.2 (2)
C1—P1—C10—C1515.4 (2)C27—C22—C23—C242.5 (3)
C22—P1—C10—C1143.5 (2)P1—C22—C23—C24177.58 (17)
C16—P1—C10—C1173.5 (2)C22—C23—C24—C250.6 (4)
C1—P1—C10—C11168.08 (17)C23—C24—C25—C261.2 (4)
C15—C10—C11—C120.1 (3)C24—C25—C26—C271.1 (4)
P1—C10—C11—C12176.46 (18)C23—C22—C27—C262.6 (3)
C10—C11—C12—C130.3 (4)P1—C22—C27—C26177.47 (18)
C11—C12—C13—C140.4 (4)C25—C26—C27—C220.8 (4)
C12—C13—C14—C150.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···Br11.03 (4)2.22 (4)3.2308 (17)169 (3)

Experimental details

Crystal data
Chemical formulaC27H24O2P+·Br·0.5H2O
Mr500.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)21.017 (8), 14.045 (5), 19.868 (7)
β (°) 126.107 (4)
V3)4738 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.40 × 0.31 × 0.22
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionIntegration
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.404, 0.520
No. of measured, independent and
observed [I > 2σ(I)] reflections
18847, 5425, 5022
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.079, 1.15
No. of reflections5425
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0133P)2 + 10.1118P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.51, 0.53

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···Br11.03 (4)2.22 (4)3.2308 (17)169 (3)
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International support initiative program for a Doctoral Fellowship at Gifu University, Japan.

References

First citationAhmed, S. Z., Glidewell, C. & Ferguson, G. (1996). Acta Cryst. C52, 1634–1636.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarcken, C. & Martin, S. F. (2001). Org. Lett. 3, 3591–3593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKojima, S., Sugino, M., Matsukawa, S., Nakamoto, M. & Akiba, K. (2002). J. Am. Chem. Soc. 124, 7674–7675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcDonald, R. N. & Campbell, T. W. (1959). J. Org. Chem. 24, 1969–1975.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. Version 2.0. MSC, The Woodlands, Texas USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNassar, R., Noll, B. C. & Henderson, K. W. (2004). Polyhedron, 23, 2499–2506.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhillips, G., Fevig, T. L., Lau, P. H., Klemm, G. H., Mao, M. K., Ma, C., Gloeckner, J. A. & Clark, A. S. (2002). Org. Process. Res. Dev. 6, 357–366.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Hata, T., Hara, H. & Katsumura, S. (2003). Tetrahedron, 59, 4945–4952.  Web of Science CrossRef CAS Google Scholar
First citationWittig, G. & Schöllkopf, U. (1954). Chem. Ber. 87, 1318–1330.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds