organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium thio­cyanate

aDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan, and bDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 30 November 2007; accepted 19 December 2007; online 4 January 2008)

In the crystal structure of the title compound, C12H24N+·NCS, the anions and cations are linked through N—H⋯N and N—H⋯S hydrogen bonds, resulting in a chain along the a axis.

Related literature

For related literature, see: Ng (1992[Ng, S. W. (1992). J. Crystallogr. Spectrosc. Res. 22, 615-618.], 1993[Ng, S. W. (1993). J. Crystallogr. Spectrosc. Res. 23, 73-75.], 1995a[Ng, S. W. (1995a). Acta Cryst. C51, 2149-2150.],b[Ng, S. W. (1995b). Malays. J. Sci. 16B, 2353-2356.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·CNS

  • Mr = 240.40

  • Orthorhombic, P b c a

  • a = 8.781 (2) Å

  • b = 16.479 (4) Å

  • c = 19.026 (4) Å

  • V = 2753.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 123 (2) K

  • 0.38 × 0.32 × 0.26 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 20885 measured reflections

  • 3151 independent reflections

  • 3014 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.092

  • S = 1.20

  • 3151 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N2 0.901 (18) 1.986 (19) 2.8811 (17) 172.8 (16)
N1—H1A⋯S1i 0.926 (17) 2.440 (17) 3.3610 (13) 172.8 (13)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Ethanolic solution of dicyclohexylamine, when treated with equimolar amount of a dicarboxylic acid, affords the dicyclohexylammonium hydrogen dicarboxylate, which can be used in a condensation reaction with an organotin(IV) hydroxides or oxides to produce the corresponding organostannate (Ng, 1995b). The dicyclohexylammonium cation has been used in earlier studies to form crystalline derivatives of the dicarboxylic acids (Ng, 1992, 1993). The title compound (I) is an unexpected product of a reaction to synthesis a bifunctionalthiourea. As a result of the steric hindrance of the two cyclohexyl rings in the cation, the C—N—C angle is opened up to 117.23 (9)°, relative to the typical tetrahedral angle of 109.5°. Both of the cyclohexyl rings, exhibit chair conformations. The anionic thiocyanate group is strongly hydrogen bonded to the cation through N—H···N and N—H···S. All the other geometric parameters are in agreement with the previous studies of similar compounds (Ng, 1995a).

Related literature top

For related literature, see: Ng (1992, 1993, 1995a,b).

Experimental top

The title compound was obtained as an unexpected product from a reaction mixture containing dicyclhexylamine, benzoylchloride and potassiumthiocyanate in acetone, refluxed at 60 °C. Crystals were grown from a solution of the compound in toluene.

Refinement top

The nitrogen H atoms were refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and TEXSAN (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Showing hydrogen bonded anion to the cation through N—H···N and N—H···S.
Dicyclohexylammonium thiocyanate top
Crystal data top
C12H24N+·CNSF(000) = 1056
Mr = 240.40Dx = 1.160 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 7454 reflections
a = 8.781 (2) Åθ = 3.2–27.5°
b = 16.479 (4) ŵ = 0.21 mm1
c = 19.026 (4) ÅT = 123 K
V = 2753.2 (11) Å3Block, colorless
Z = 80.38 × 0.32 × 0.26 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 117
20885 measured reflectionsk = 1721
3151 independent reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.037P)2 + 1.0451P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H24N+·CNSV = 2753.2 (11) Å3
Mr = 240.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.781 (2) ŵ = 0.21 mm1
b = 16.479 (4) ÅT = 123 K
c = 19.026 (4) Å0.38 × 0.32 × 0.26 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3014 reflections with I > 2σ(I)
20885 measured reflectionsRint = 0.029
3151 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.32 e Å3
3151 reflectionsΔρmin = 0.17 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37002 (12)0.15566 (6)0.52333 (5)0.0141 (2)
H1A0.4620 (19)0.1381 (9)0.5417 (8)0.024 (4)*
H1B0.371 (2)0.2103 (11)0.5215 (9)0.028 (4)*
C10.36414 (14)0.12612 (7)0.44808 (6)0.0145 (2)
H10.37430.06570.44790.017*
C20.49937 (14)0.16257 (8)0.40919 (6)0.0176 (3)
H2A0.59520.14310.43080.021*
H2B0.49660.22240.41350.021*
C30.49638 (15)0.13897 (8)0.33142 (7)0.0209 (3)
H3A0.58200.16570.30670.025*
H3B0.50970.07950.32690.025*
C40.34657 (15)0.16400 (9)0.29723 (7)0.0220 (3)
H4A0.33720.22390.29800.026*
H4B0.34550.14610.24760.026*
C50.21236 (15)0.12627 (8)0.33614 (7)0.0208 (3)
H5A0.21690.06650.33140.025*
H5B0.11610.14510.31450.025*
C60.21305 (14)0.14887 (8)0.41423 (6)0.0173 (3)
H6A0.19580.20790.41930.021*
H6B0.12910.12020.43850.021*
C70.24518 (14)0.12773 (7)0.57191 (6)0.0151 (2)
H70.14500.14550.55220.018*
C80.26768 (15)0.16798 (8)0.64351 (6)0.0184 (3)
H8A0.26410.22770.63820.022*
H8B0.36870.15310.66270.022*
C90.14262 (17)0.14035 (8)0.69417 (7)0.0239 (3)
H9A0.15960.16530.74080.029*
H9B0.04240.15880.67650.029*
C100.14189 (17)0.04800 (8)0.70150 (7)0.0263 (3)
H10A0.23850.03000.72330.032*
H10B0.05720.03140.73270.032*
C110.12341 (16)0.00738 (8)0.62991 (7)0.0241 (3)
H11A0.02140.02030.61080.029*
H11B0.13020.05220.63570.029*
C120.24540 (15)0.03553 (7)0.57788 (7)0.0197 (3)
H12A0.34670.01680.59400.024*
H12B0.22550.01130.53120.024*
N20.36405 (13)0.32916 (7)0.50487 (6)0.0223 (2)
C130.29457 (14)0.35958 (7)0.45967 (7)0.0175 (3)
S10.19380 (4)0.40074 (2)0.396108 (18)0.02252 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (5)0.0155 (5)0.0121 (5)0.0004 (4)0.0009 (4)0.0003 (4)
C10.0159 (6)0.0167 (5)0.0108 (5)0.0004 (4)0.0004 (4)0.0018 (4)
C20.0130 (6)0.0258 (6)0.0141 (6)0.0001 (5)0.0000 (5)0.0015 (5)
C30.0170 (6)0.0309 (7)0.0146 (6)0.0008 (5)0.0024 (5)0.0026 (5)
C40.0212 (7)0.0322 (7)0.0126 (6)0.0012 (5)0.0007 (5)0.0018 (5)
C50.0176 (6)0.0302 (7)0.0145 (6)0.0033 (5)0.0034 (5)0.0002 (5)
C60.0134 (6)0.0237 (6)0.0147 (6)0.0020 (5)0.0001 (5)0.0008 (5)
C70.0144 (6)0.0177 (5)0.0132 (6)0.0002 (5)0.0015 (5)0.0016 (4)
C80.0208 (6)0.0204 (6)0.0142 (6)0.0004 (5)0.0004 (5)0.0010 (5)
C90.0269 (7)0.0285 (7)0.0161 (6)0.0002 (6)0.0050 (5)0.0006 (5)
C100.0307 (7)0.0287 (7)0.0196 (7)0.0019 (6)0.0054 (6)0.0078 (5)
C110.0258 (7)0.0218 (6)0.0248 (7)0.0045 (5)0.0045 (6)0.0046 (5)
C120.0224 (6)0.0172 (6)0.0196 (6)0.0016 (5)0.0031 (5)0.0008 (5)
N20.0192 (6)0.0197 (5)0.0279 (6)0.0004 (4)0.0000 (5)0.0013 (5)
C130.0151 (6)0.0149 (6)0.0226 (6)0.0022 (5)0.0061 (5)0.0035 (5)
S10.02052 (18)0.02481 (18)0.02222 (18)0.00004 (12)0.00086 (13)0.00398 (12)
Geometric parameters (Å, º) top
N1—C71.5060 (16)C6—H6B0.9900
N1—C11.5132 (15)C7—C121.5237 (17)
N1—H1A0.926 (17)C7—C81.5280 (17)
N1—H1B0.901 (18)C7—H71.0000
C1—C61.5216 (17)C8—C91.5304 (18)
C1—C21.5226 (17)C8—H8A0.9900
C1—H11.0000C8—H8B0.9900
C2—C31.5301 (17)C9—C101.528 (2)
C2—H2A0.9900C9—H9A0.9900
C2—H2B0.9900C9—H9B0.9900
C3—C41.5244 (18)C10—C111.526 (2)
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
C4—C51.5243 (18)C11—C121.5304 (18)
C4—H4A0.9900C11—H11A0.9900
C4—H4B0.9900C11—H11B0.9900
C5—C61.5317 (17)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C5—H5B0.9900N2—C131.1676 (18)
C6—H6A0.9900C13—S11.6448 (14)
C7—N1—C1117.23 (9)C5—C6—H6B109.5
C7—N1—H1A107.9 (10)H6A—C6—H6B108.1
C1—N1—H1A106.6 (10)N1—C7—C12110.47 (10)
C7—N1—H1B109.4 (11)N1—C7—C8108.69 (10)
C1—N1—H1B106.6 (11)C12—C7—C8111.48 (10)
H1A—N1—H1B108.8 (15)N1—C7—H7108.7
N1—C1—C6110.54 (10)C12—C7—H7108.7
N1—C1—C2107.84 (10)C8—C7—H7108.7
C6—C1—C2112.16 (10)C7—C8—C9109.85 (11)
N1—C1—H1108.7C7—C8—H8A109.7
C6—C1—H1108.7C9—C8—H8A109.7
C2—C1—H1108.7C7—C8—H8B109.7
C1—C2—C3110.87 (10)C9—C8—H8B109.7
C1—C2—H2A109.5H8A—C8—H8B108.2
C3—C2—H2A109.5C10—C9—C8110.90 (11)
C1—C2—H2B109.5C10—C9—H9A109.5
C3—C2—H2B109.5C8—C9—H9A109.5
H2A—C2—H2B108.1C10—C9—H9B109.5
C4—C3—C2111.02 (10)C8—C9—H9B109.5
C4—C3—H3A109.4H9A—C9—H9B108.0
C2—C3—H3A109.4C11—C10—C9110.85 (11)
C4—C3—H3B109.4C11—C10—H10A109.5
C2—C3—H3B109.4C9—C10—H10A109.5
H3A—C3—H3B108.0C11—C10—H10B109.5
C5—C4—C3110.46 (11)C9—C10—H10B109.5
C5—C4—H4A109.6H10A—C10—H10B108.1
C3—C4—H4A109.6C10—C11—C12111.70 (11)
C5—C4—H4B109.6C10—C11—H11A109.3
C3—C4—H4B109.6C12—C11—H11A109.3
H4A—C4—H4B108.1C10—C11—H11B109.3
C4—C5—C6111.65 (11)C12—C11—H11B109.3
C4—C5—H5A109.3H11A—C11—H11B107.9
C6—C5—H5A109.3C7—C12—C11110.47 (11)
C4—C5—H5B109.3C7—C12—H12A109.6
C6—C5—H5B109.3C11—C12—H12A109.6
H5A—C5—H5B108.0C7—C12—H12B109.6
C1—C6—C5110.73 (10)C11—C12—H12B109.6
C1—C6—H6A109.5H12A—C12—H12B108.1
C5—C6—H6A109.5N2—C13—S1178.68 (12)
C1—C6—H6B109.5
C7—N1—C1—C656.44 (13)C1—N1—C7—C1260.50 (14)
C7—N1—C1—C2179.38 (10)C1—N1—C7—C8176.89 (10)
N1—C1—C2—C3176.97 (10)N1—C7—C8—C9179.73 (10)
C6—C1—C2—C355.03 (13)C12—C7—C8—C957.74 (14)
C1—C2—C3—C456.09 (14)C7—C8—C9—C1057.46 (14)
C2—C3—C4—C556.87 (15)C8—C9—C10—C1156.47 (15)
C3—C4—C5—C656.52 (15)C9—C10—C11—C1255.21 (16)
N1—C1—C6—C5174.64 (10)N1—C7—C12—C11177.35 (10)
C2—C1—C6—C554.26 (13)C8—C7—C12—C1156.39 (14)
C4—C5—C6—C154.99 (14)C10—C11—C12—C754.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N20.901 (18)1.986 (19)2.8811 (17)172.8 (16)
N1—H1A···S1i0.926 (17)2.440 (17)3.3610 (13)172.8 (13)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H24N+·CNS
Mr240.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)8.781 (2), 16.479 (4), 19.026 (4)
V3)2753.2 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.32 × 0.26
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20885, 3151, 3014
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 1.20
No. of reflections3151
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 1997) and TEXSAN (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N20.901 (18)1.986 (19)2.8811 (17)172.8 (16)
N1—H1A···S1i0.926 (17)2.440 (17)3.3610 (13)172.8 (13)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative Program for a Doctoral Fellowship at Gifu University, Japan.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNg, S. W. (1992). J. Crystallogr. Spectrosc. Res. 22, 615–618.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1993). J. Crystallogr. Spectrosc. Res. 23, 73–75.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1995a). Acta Cryst. C51, 2149–2150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1995b). Malays. J. Sci. 16B, 2353–2356.  Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds