metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m399-m400

catena-Poly[[tetra­kis(hexa­methyl­phospho­ramide-κO)bis­­(nitrato-κ2O,O′)lanthanum(III)] [silver(I)-di-μ2-sulfido-tungstate(VI)-di-μ2-sulfido]]

aSchool of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and bHuaian Teachers College, Huaian 223001, Jiangsu People's Republic of China
*Correspondence e-mail: chizhang@mail.njust.edu.cn

(Received 2 December 2007; accepted 12 December 2007; online 23 January 2008)

Hexamethyl­phospho­ramide (hmp), tetra­thio­tungstate(VI), silver sulfide and lanthanum(III) nitrate are self-assembled to form discrete cations one-dimensional poylmeric anionic chains [AgWS4]nn in the title compound, {[La(NO3)2(C6H18N3OP)4][AgWS4]}n. The central La atom in the cation is coordinated by eight O atoms from two nitrate and four hmp ligands. Together with the two nitrate ligands, the cation is monovalent, which leads to the anionic chain having a monovalent repeat unit. The polymeric anionic chain with W⋯Ag⋯W and Ag⋯W⋯Ag angles of 165.94 (3) and 155.894 (14)° presents a distorted linear configuration. Five N atoms, 18 C atoms and their attached H atoms are disordered equally over two positions.

Related literature

The one-dimensional W/S/Ag anionic polymers {(γ-Me­PyH)[WS4Ag]}n (Lang et al., 1993[Lang, J. P., Li, J. G., Bao, S. A., Xin, X. Q. & Yu, K. B. (1993). Polyhedron, 12, 801-806.]) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (Huang et al., 1997[Huang, Q., Wu, X. T., Sheng, T. L., Wang, Q. M. & Lu, J. X. (1997). Polyhedron, 16, 217-222.]) have ideal and nearly linear configurations, respectively. Two analogs of the title compound, {[Eu(hmp)4(NO3)2][WS4Ag]}n (Zhang, Qian et al., 2007[Zhang, J., Qian, J., Cao, Y. & Zhang, C. (2007). Acta Cryst. E63, m2386-m2387.]) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007[Zhang, J.-F., Cao, Y., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2248-m2249.]), have similar wave-like chains. {[Nd(dmf)8][W4S16Ag5]}n (Huang et al., 1996[Huang, Q., Wu, X. T., Wang, Q. M., Sheng, T. L. & Lu, J. X. (1996). Angew. Chem. Int. Ed. Engl. 35, 868-870.]) has solvent-coordinated rare-earth cations leading to an anionic chain with a trivalent repeat unit. For a review of polymeric Mo(W)/S/Ag(Cu) clusters, see: Niu et al. (2004[Niu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169-183.]). For a review of the third-order non-linear optical properties of Mo(W)/S/Ag(Cu) clusters, see: Zhang, Song et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]).

[Scheme 1]

Experimental

Crystal data
  • [La(NO3)2(C6H18N3OP)4][AgWS4]

  • Mr = 1399.71

  • Monoclinic, P 21 /c

  • a = 15.883 (2) Å

  • b = 30.070 (4) Å

  • c = 11.5283 (15) Å

  • β = 90.502 (3)°

  • V = 5505.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 295 (2) K

  • 0.50 × 0.42 × 0.38 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.18, Tmax = 0.26

  • 50056 measured reflections

  • 10031 independent reflections

  • 8984 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.137

  • S = 1.15

  • 10031 reflections

  • 462 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.90 e Å−3

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and unique properties as functional materials, such as third-order nonlinear optical (NLO) materials (Zhang, Song et al., 2007, and references therein). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound {[La(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide) with a wave-like anionic chain was prepared by following such route using La(III)-hmp complex as counterion.

The cation in the title compound, where La3- is coordinated by eight O atoms from two nitrate and four hmp ligands, has the same structure as those in the isostructural {[Eu(hmp)4(NO3)2][WS4Ag]}n (Zhang, Qian et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007). Parts of dimethylamine groups from hmp ligands have large librations, which gives rise to some disordered C and N atoms. In possession of two nitrate ligands, the cation in the title compound is univalent (Fig. 1), which leads to an anionic chain with a univalent repeat unit, unlike other solvent-coordinated rare-earth cations (Niu et al., 2004, and references therein), which are trivalent and induce trivalent repeat units. For example, [Nd(dmf)8]3+ induces an anionic chain with a trivalent repeat unit [W4S16Ag5]3- (Huang et al., 1996).

As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 165.94 (3) and 155.894 (14) °, unlike those in {(γ-MePyH)[WS4Ag]}n (Lang et al. 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (Huang et al., 1997), showing an ideal linear chain and a nearly linear chain, respectively. This fact suggests that cations with bigger bulk lead to more distorted anionic chains.

Similar angles for W—Ag—W and Ag—W—Ag are found in another two distorted linear chains in {[Eu(hmp)4(NO3)2][WS4Ag]}n (Zhang, Qian et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007), implying that different rare earth cations with the same coordination environments will result in the same anionic structures.

Related literature top

Examples of one-dimensional W/S/Ag anionic polymers with ideal and nearly linear configurations are {(γ-MePyH)[WS4Ag]}n (Lang et al., 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (Huang et al., 1997) respectively. Two more relevant analogs of the title compound are {[Eu(hmp)4(NO3)2][WS4Ag]}n (Zhang, Qian et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007), which have similar wave-like chains. {[Nd(dmf)8][W4S16Ag5]}n (Huang et al., 1996) shows solvent-coordinated rare-earth cations leading to an anionic chain with a trivalent repeat unit. For a review of polymeric Mo(W)/S/Ag(Cu) clusters, see: Niu et al. (2004). For a review of third-order non-linear optical properties of Mo(W)/S/Ag(Cu) clusters, see: Zhang, Song et al. (2007).

Experimental top

1 mmol A g2S was added to a solution of [NH4]2WS4 (2 mmol in 30 mL h mp) with thorough stirring for 9 h. The solution underwent an additional stir for one minute after 1 mmol La(NO3)3.6H2O was added. After filtration the orange-red filtrate was carefully laid on the surface with 30 ml i-PrOH. Orange-red block crystals were obtained after ten days. Yield: 1.302 g in pure form, 46.5% (based on W). Analysis calculated for C24H72AgLaN14O10P4S4W: C 20.59, H 5.18, N 14.01%; found: C 20.57, H 5.15, N 14.03%. IR: ν, cm-1, 482.9 m, 446.8 s (W-µ2-S).

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq for methyl H atoms and 0.96 Å for C—H bonds. Parts of dimethylamine groups from hmp ligands have large librations, resulting in some disordered C and N atoms. The occupancy for the disordered C and N atoms were all refined to be 0.5:0.5.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. The molecular structure of a portion of the anionic chain in the title compound, with atom labels and 30% probability displacement ellipsoids. (symmetry codes: A x, -y + 1/2, z + 1/2; AA and B x, y, z + 1; AB and C x, -y + 1/2, z + 1.5).
catena-Poly[[tetrakis(hexamethylphosphoramide-κO)bis(nitrato- κ2O,O')lanthanum(III)] [silver(I)-di-µ2-sulfido-tungsten(VI)-di-µ2-sulfido]] top
Crystal data top
[La(NO3)2(C6H18N3OP)4][AgWS4]F(000) = 2784
Mr = 1399.71Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 19164 reflections
a = 15.883 (2) Åθ = 3.1–25.3°
b = 30.070 (4) ŵ = 3.52 mm1
c = 11.5283 (15) ÅT = 295 K
β = 90.502 (3)°Block, orange–red
V = 5505.8 (12) Å30.50 × 0.42 × 0.38 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
10031 independent reflections
Radiation source: fine-focus sealed tube8984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3635
Tmin = 0.18, Tmax = 0.26l = 1313
50056 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0507P)2 + 23.8085P]
where P = (Fo2 + 2Fc2)/3
10031 reflections(Δ/σ)max = 0.003
462 parametersΔρmax = 1.07 e Å3
32 restraintsΔρmin = 1.90 e Å3
Crystal data top
[La(NO3)2(C6H18N3OP)4][AgWS4]V = 5505.8 (12) Å3
Mr = 1399.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.883 (2) ŵ = 3.52 mm1
b = 30.070 (4) ÅT = 295 K
c = 11.5283 (15) Å0.50 × 0.42 × 0.38 mm
β = 90.502 (3)°
Data collection top
Rigaku Mercury
diffractometer
10031 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8984 reflections with I > 2σ(I)
Tmin = 0.18, Tmax = 0.26Rint = 0.049
50056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05932 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0507P)2 + 23.8085P]
where P = (Fo2 + 2Fc2)/3
10031 reflectionsΔρmax = 1.07 e Å3
462 parametersΔρmin = 1.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.21336 (2)0.229586 (11)0.47656 (3)0.04668 (12)
La10.73680 (3)0.416357 (14)0.34214 (4)0.04265 (13)
Ag10.21350 (6)0.23828 (3)0.21889 (6)0.0770 (2)
S10.09980 (16)0.21700 (11)0.3727 (2)0.0748 (7)
S20.32665 (16)0.21611 (11)0.3745 (2)0.0768 (8)
S30.21282 (17)0.18414 (8)0.6261 (2)0.0658 (6)
S40.21416 (19)0.30013 (8)0.5270 (2)0.0727 (7)
P10.6905 (2)0.52880 (9)0.1910 (2)0.0736 (7)
P20.51582 (13)0.36353 (8)0.3300 (2)0.0551 (5)
P30.96668 (14)0.40731 (9)0.2457 (3)0.0683 (7)
P40.7965 (2)0.34795 (10)0.6129 (2)0.0765 (8)
O10.7508 (6)0.3388 (3)0.2430 (8)0.0964 (14)
O20.7254 (6)0.3932 (3)0.1255 (7)0.0964 (14)
O30.7253 (6)0.3263 (3)0.0613 (7)0.0964 (14)
O40.7954 (5)0.4739 (3)0.4923 (7)0.0887 (13)
O50.6637 (5)0.4594 (3)0.5105 (7)0.0887 (13)
O60.7271 (5)0.4970 (3)0.6433 (7)0.0887 (13)
O70.7072 (4)0.48424 (18)0.2374 (6)0.0679 (17)
O80.5952 (3)0.38996 (19)0.3351 (5)0.0573 (14)
O90.8827 (3)0.4191 (2)0.2935 (6)0.0667 (17)
O100.7731 (4)0.3691 (2)0.5022 (6)0.0700 (17)
N10.7346 (6)0.3524 (4)0.1427 (9)0.090 (3)
N20.7295 (7)0.4776 (3)0.5514 (8)0.081 (3)
N30.7556 (9)0.5664 (3)0.2417 (13)0.128 (4)
N40.7075 (8)0.5308 (4)0.0529 (8)0.111 (4)
N50.5964 (9)0.5450 (4)0.2264 (11)0.147 (6)
N60.5012 (5)0.3417 (3)0.2041 (8)0.083 (3)
N70.5174 (5)0.3229 (3)0.4237 (8)0.081 (2)
N80.4369 (4)0.3963 (3)0.3588 (7)0.069 (2)
N90.9891 (7)0.3543 (5)0.2371 (16)0.149 (6)
N101.0346 (11)0.4398 (7)0.2820 (17)0.086 (4)*0.50
N10'1.0389 (12)0.4211 (6)0.3363 (17)0.086 (4)*0.50
N110.9609 (14)0.4042 (7)0.103 (2)0.093 (4)*0.50
N11'0.9732 (14)0.4250 (7)0.1080 (19)0.093 (4)*0.50
N120.8974 (14)0.3616 (7)0.642 (2)0.102 (5)*0.50
N12'0.8564 (14)0.3715 (8)0.700 (2)0.102 (5)*0.50
N130.7778 (12)0.2976 (6)0.6083 (16)0.086 (4)*0.50
N13'0.8541 (12)0.3015 (6)0.5863 (15)0.086 (4)*0.50
N140.7403 (14)0.3730 (8)0.7122 (19)0.108 (5)*0.50
N14'0.7166 (14)0.3280 (8)0.684 (2)0.108 (5)*0.50
C10.8422 (17)0.5726 (16)0.204 (4)0.200 (10)*0.50
H1A0.86730.59670.24710.300*0.50
H1B0.84290.57930.12310.300*0.50
H1C0.87360.54580.21880.300*0.50
C1'0.780 (3)0.576 (2)0.358 (3)0.200 (10)*0.50
H1'A0.82000.59990.35820.300*0.50
H1'B0.80490.55010.39210.300*0.50
H1'C0.73120.58460.40110.300*0.50
C20.745 (3)0.586 (2)0.354 (3)0.200 (10)*0.50
H2A0.78920.60720.36830.300*0.50
H2B0.74780.56310.41250.300*0.50
H2C0.69150.60060.35780.300*0.50
C2'0.716 (3)0.6095 (10)0.220 (4)0.200 (10)*0.50
H2'A0.75070.63280.25100.300*0.50
H2'B0.66180.61030.25730.300*0.50
H2'C0.70830.61370.13820.300*0.50
C30.7228 (19)0.4955 (9)0.025 (2)0.116 (7)*0.50
H3A0.73130.50720.10170.175*0.50
H3B0.67520.47580.02640.175*0.50
H3C0.77210.47940.00080.175*0.50
C3'0.6771 (19)0.4955 (9)0.018 (3)0.116 (7)*0.50
H3'A0.69170.50110.09750.175*0.50
H3'B0.61700.49360.01170.175*0.50
H3'C0.70200.46800.00680.175*0.50
C40.730 (3)0.5756 (9)0.013 (4)0.154 (10)*0.50
H4A0.73980.57490.06920.231*0.50
H4B0.78020.58530.05230.231*0.50
H4C0.68490.59580.02920.231*0.50
C4'0.701 (3)0.5686 (10)0.027 (3)0.154 (10)*0.50
H4'A0.71430.55910.10430.231*0.50
H4'B0.73900.59160.00340.231*0.50
H4'C0.64410.57990.02650.231*0.50
C50.546 (2)0.5814 (10)0.178 (3)0.143 (9)*0.50
H5A0.49190.58180.21430.214*0.50
H5B0.53900.57710.09610.214*0.50
H5C0.57420.60910.19210.214*0.50
C5'0.588 (2)0.5938 (7)0.224 (3)0.143 (9)*0.50
H5'A0.53230.60210.24550.214*0.50
H5'B0.59990.60450.14740.214*0.50
H5'C0.62800.60660.27800.214*0.50
C60.533 (2)0.5177 (13)0.282 (4)0.122 (7)*0.50
H6A0.48290.53510.29360.184*0.50
H6B0.55390.50730.35510.184*0.50
H6C0.51970.49280.23300.184*0.50
C6'0.532 (2)0.5122 (13)0.250 (4)0.122 (7)*0.50
H6'A0.48070.52680.26870.184*0.50
H6'B0.55010.49380.31350.184*0.50
H6'C0.52400.49400.18200.184*0.50
C70.5137 (9)0.3685 (6)0.1023 (12)0.134 (6)
H7A0.50300.35090.03430.201*
H7B0.57070.37910.10120.201*
H7C0.47580.39340.10350.201*
C80.4660 (10)0.2969 (5)0.1868 (15)0.145 (7)
H8A0.46300.29040.10540.218*
H8B0.41050.29560.21910.218*
H8C0.50150.27540.22480.218*
C90.4528 (8)0.3133 (5)0.5070 (11)0.106 (4)
H9A0.46870.28780.55200.159*
H9B0.40070.30750.46710.159*
H9C0.44590.33840.55760.159*
C100.5850 (8)0.2909 (4)0.4234 (13)0.112 (4)
H10A0.57620.26950.48390.167*
H10B0.63760.30590.43640.167*
H10C0.58610.27600.34980.167*
C110.4436 (7)0.4301 (4)0.4476 (12)0.106 (4)
H11A0.39140.44610.45230.159*
H11B0.48810.45040.42840.159*
H11C0.45580.41640.52100.159*
C120.3513 (6)0.3858 (5)0.3196 (11)0.105 (4)
H12A0.31350.40870.34470.157*
H12B0.33420.35780.35200.157*
H12C0.34990.38400.23650.157*
C130.961 (2)0.3356 (13)0.107 (3)0.141 (9)*0.50
H13A0.97340.30440.10130.211*0.50
H13B0.99080.35150.04820.211*0.50
H13C0.90120.34000.09570.211*0.50
C13'0.960 (2)0.3183 (12)0.184 (3)0.141 (9)*0.50
H13D0.95080.29520.23940.211*0.50
H13E0.99990.30850.12730.211*0.50
H13F0.90760.32530.14530.211*0.50
C140.989 (3)0.3235 (16)0.330 (4)0.179 (13)*0.50
H14A1.00610.33830.40040.269*0.50
H14B1.02740.29970.31420.269*0.50
H14C0.93330.31170.33970.269*0.50
C14'1.035 (3)0.3434 (16)0.359 (4)0.179 (13)*0.50
H14D1.03280.36920.40810.269*0.50
H14E1.09200.33520.34620.269*0.50
H14F1.00580.31930.39660.269*0.50
C151.1257 (14)0.4301 (11)0.270 (3)0.129 (7)*0.50
H15A1.15790.45490.29810.194*0.50
H15B1.13830.42510.18960.194*0.50
H15C1.13980.40410.31400.194*0.50
C15'1.1219 (16)0.3990 (11)0.344 (3)0.129 (7)*0.50
H15D1.15460.41240.40540.194*0.50
H15E1.15090.40230.27200.194*0.50
H15F1.11420.36800.36060.194*0.50
C161.0160 (19)0.4804 (8)0.340 (2)0.114 (7)*0.50
H16A1.06740.49610.35680.170*0.50
H16B0.98780.47400.41190.170*0.50
H16C0.98020.49840.29220.170*0.50
C16'1.0289 (19)0.4639 (8)0.398 (2)0.114 (7)*0.50
H16D1.07550.46820.45050.170*0.50
H16E0.97730.46360.44080.170*0.50
H16F1.02740.48780.34270.170*0.50
C171.021 (2)0.3844 (14)0.026 (3)0.163 (11)*0.50
H17A1.00210.38800.05250.245*0.50
H17B1.02640.35330.04380.245*0.50
H17C1.07460.39870.03640.245*0.50
C17'1.048 (2)0.4179 (14)0.039 (3)0.163 (11)*0.50
H17D1.04040.43060.03670.245*0.50
H17E1.05890.38660.03160.245*0.50
H17F1.09580.43190.07640.245*0.50
C180.910 (2)0.4375 (10)0.042 (3)0.132 (8)*0.50
H18A0.91260.43230.04000.197*0.50
H18B0.93120.46660.05920.197*0.50
H18C0.85250.43530.06680.197*0.50
C18'0.918 (2)0.4601 (10)0.070 (3)0.132 (8)*0.50
H18D0.92850.46690.01000.197*0.50
H18E0.92730.48620.11640.197*0.50
H18F0.86020.45070.07790.197*0.50
C190.946 (3)0.3996 (11)0.610 (4)0.160 (10)*0.50
H19A1.00200.39670.64190.240*0.50
H19B0.92030.42590.64020.240*0.50
H19C0.94910.40150.52710.240*0.50
C19'0.833 (2)0.3884 (13)0.811 (3)0.160 (10)*0.50
H19D0.88140.40200.84700.240*0.50
H19E0.81370.36440.85840.240*0.50
H19F0.78940.41000.80130.240*0.50
C200.954 (2)0.3283 (12)0.689 (3)0.165 (11)*0.50
H20A1.00890.34110.70020.247*0.50
H20B0.95780.30370.63600.247*0.50
H20C0.93300.31800.76200.247*0.50
C20'0.917 (3)0.4032 (12)0.661 (4)0.165 (11)*0.50
H20D0.94740.41490.72620.247*0.50
H20E0.88840.42690.62110.247*0.50
H20F0.95530.38890.60890.247*0.50
C210.8011 (16)0.2713 (9)0.510 (2)0.092 (5)*0.50
H21A0.78450.24090.52200.138*0.50
H21B0.86100.27260.49980.138*0.50
H21C0.77350.28260.44150.138*0.50
C21'0.8366 (17)0.2732 (9)0.488 (2)0.092 (5)*0.50
H21D0.87600.24900.48780.138*0.50
H21E0.84160.29000.41810.138*0.50
H21F0.78040.26170.49430.138*0.50
C220.762 (3)0.2714 (13)0.712 (3)0.171 (11)*0.50
H22A0.75280.24080.69120.256*0.50
H22B0.71230.28260.75000.256*0.50
H22C0.80900.27350.76430.256*0.50
C22'0.920 (2)0.2833 (14)0.661 (3)0.171 (11)*0.50
H22D0.94250.25680.62700.256*0.50
H22E0.89680.27630.73580.256*0.50
H22F0.96410.30490.67090.256*0.50
C230.749 (3)0.3828 (14)0.834 (2)0.167 (11)*0.50
H23A0.69900.39770.86030.250*0.50
H23B0.79680.40150.84660.250*0.50
H23C0.75590.35560.87650.250*0.50
C23'0.710 (3)0.2848 (11)0.740 (3)0.167 (11)*0.50
H23D0.65580.28170.77370.250*0.50
H23E0.75280.28250.79950.250*0.50
H23G0.71880.26170.68360.250*0.50
C240.6495 (17)0.3780 (13)0.699 (4)0.140 (9)*0.50
H24A0.62740.39300.76530.210*0.50
H24D0.62400.34920.69190.210*0.50
H24B0.63740.39500.63020.210*0.50
C24'0.650 (2)0.3596 (12)0.708 (4)0.140 (9)*0.50
H24C0.60560.34490.74910.210*0.50
H24G0.62770.37120.63590.210*0.50
H24E0.67180.38360.75370.210*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0533 (2)0.0542 (2)0.03251 (17)0.00338 (15)0.00248 (13)0.00355 (13)
La10.0354 (2)0.0342 (2)0.0583 (3)0.00025 (17)0.00119 (19)0.00055 (19)
Ag10.1111 (7)0.0849 (6)0.0349 (4)0.0012 (5)0.0010 (4)0.0025 (3)
S10.0606 (14)0.112 (2)0.0514 (13)0.0217 (14)0.0098 (11)0.0068 (13)
S20.0584 (14)0.121 (2)0.0511 (13)0.0100 (14)0.0028 (11)0.0030 (14)
S30.0926 (17)0.0554 (13)0.0492 (12)0.0010 (12)0.0029 (12)0.0122 (10)
S40.111 (2)0.0519 (13)0.0558 (13)0.0072 (13)0.0009 (13)0.0083 (11)
P10.102 (2)0.0526 (14)0.0664 (16)0.0230 (14)0.0073 (14)0.0130 (12)
P20.0386 (10)0.0595 (13)0.0672 (14)0.0086 (10)0.0023 (10)0.0078 (11)
P30.0387 (11)0.0731 (16)0.0931 (19)0.0042 (11)0.0102 (12)0.0047 (14)
P40.098 (2)0.0694 (17)0.0616 (15)0.0005 (15)0.0249 (14)0.0056 (13)
O10.130 (4)0.073 (3)0.087 (3)0.012 (3)0.001 (3)0.018 (2)
O20.130 (4)0.073 (3)0.087 (3)0.012 (3)0.001 (3)0.018 (2)
O30.130 (4)0.073 (3)0.087 (3)0.012 (3)0.001 (3)0.018 (2)
O40.082 (3)0.087 (3)0.096 (3)0.007 (2)0.011 (2)0.037 (2)
O50.082 (3)0.087 (3)0.096 (3)0.007 (2)0.011 (2)0.037 (2)
O60.082 (3)0.087 (3)0.096 (3)0.007 (2)0.011 (2)0.037 (2)
O70.078 (4)0.037 (3)0.088 (5)0.002 (3)0.006 (3)0.013 (3)
O80.039 (3)0.060 (4)0.072 (4)0.010 (3)0.002 (3)0.003 (3)
O90.036 (3)0.064 (4)0.100 (5)0.002 (3)0.011 (3)0.007 (3)
O100.078 (4)0.056 (4)0.076 (4)0.002 (3)0.017 (3)0.016 (3)
N10.087 (6)0.094 (7)0.090 (7)0.009 (5)0.015 (5)0.057 (6)
N20.110 (7)0.058 (5)0.073 (5)0.025 (5)0.031 (5)0.028 (4)
N30.179 (12)0.041 (5)0.164 (11)0.014 (6)0.039 (10)0.003 (6)
N40.171 (11)0.089 (7)0.073 (6)0.031 (7)0.013 (7)0.027 (5)
N50.178 (12)0.129 (10)0.134 (10)0.096 (10)0.058 (9)0.074 (8)
N60.068 (5)0.108 (7)0.074 (6)0.004 (5)0.012 (4)0.028 (5)
N70.063 (5)0.074 (6)0.105 (7)0.009 (4)0.009 (5)0.015 (5)
N80.039 (4)0.087 (6)0.082 (5)0.004 (4)0.002 (4)0.014 (5)
N90.076 (7)0.143 (12)0.229 (17)0.000 (7)0.029 (9)0.079 (12)
C70.116 (11)0.203 (18)0.082 (9)0.012 (11)0.036 (8)0.002 (10)
C80.135 (13)0.120 (12)0.179 (16)0.018 (10)0.036 (12)0.078 (12)
C90.101 (9)0.116 (11)0.100 (9)0.023 (8)0.011 (7)0.015 (8)
C100.107 (10)0.084 (9)0.145 (13)0.007 (8)0.025 (9)0.027 (8)
C110.074 (7)0.113 (10)0.132 (11)0.005 (7)0.015 (7)0.040 (9)
C120.049 (6)0.149 (12)0.116 (10)0.012 (7)0.013 (6)0.005 (9)
Geometric parameters (Å, º) top
W1—S12.189 (2)C3'—H3'C0.9600
W1—S22.196 (3)C4—H4A0.9600
W1—S42.199 (3)C4—H4B0.9600
W1—S32.200 (2)C4—H4C0.9600
W1—Ag1i2.9561 (8)C4'—H4'A0.9600
W1—Ag12.9819 (8)C4'—H4'B0.9600
La1—O82.386 (5)C4'—H4'C0.9600
La1—O92.390 (5)C5—H5A0.9600
La1—O102.396 (6)C5—H5B0.9600
La1—O72.416 (5)C5—H5C0.9600
La1—O22.598 (8)C5'—H5'A0.9600
La1—O12.608 (7)C5'—H5'B0.9600
La1—O52.613 (7)C5'—H5'C0.9600
La1—O42.614 (7)C6—H6A0.9600
La1—N12.998 (8)C6—H6B0.9600
La1—N23.038 (8)C6—H6C0.9600
Ag1—S4ii2.496 (2)C6'—H6'A0.9600
Ag1—S3ii2.566 (3)C6'—H6'B0.9600
Ag1—S22.614 (3)C6'—H6'C0.9600
Ag1—S12.621 (3)C7—H7A0.9600
Ag1—W1ii2.9561 (8)C7—H7B0.9600
S3—Ag1i2.566 (3)C7—H7C0.9600
S4—Ag1i2.496 (2)C8—H8A0.9600
P1—O71.466 (6)C8—H8B0.9600
P1—N41.618 (10)C8—H8C0.9600
P1—N51.627 (12)C9—H9A0.9600
P1—N31.638 (13)C9—H9B0.9600
P2—O81.491 (5)C9—H9C0.9600
P2—N61.608 (8)C10—H10A0.9600
P2—N81.630 (8)C10—H10B0.9600
P2—N71.631 (9)C10—H10C0.9600
P3—O91.491 (6)C11—H11A0.9600
P3—N101.511 (19)C11—H11B0.9600
P3—N10'1.599 (19)C11—H11C0.9600
P3—N91.638 (15)C12—H12A0.9600
P3—N111.65 (2)C12—H12B0.9600
P3—N11'1.68 (2)C12—H12C0.9600
P4—O101.470 (6)C13—H13A0.9600
P4—N131.544 (19)C13—H13B0.9600
P4—N12'1.55 (2)C13—H13C0.9600
P4—N14'1.63 (2)C13'—H13D0.9600
P4—N141.64 (2)C13'—H13E0.9600
P4—N121.68 (2)C13'—H13F0.9600
P4—N13'1.699 (19)C14—H14A0.9600
O1—N11.251 (12)C14—H14B0.9600
O2—N11.252 (12)C14—H14C0.9600
O3—N11.231 (10)C14'—H14D0.9600
O4—N21.260 (11)C14'—H14E0.9600
O5—N21.267 (11)C14'—H14F0.9600
O6—N21.211 (10)C15—H15A0.9600
N3—C1'1.418 (19)C15—H15B0.9600
N3—C21.437 (19)C15—H15C0.9600
N3—C11.456 (19)C15'—H15D0.9600
N3—C2'1.462 (19)C15'—H15E0.9600
N4—C31.416 (17)C15'—H15F0.9600
N4—C3'1.423 (17)C16—H16A0.9600
N4—C41.467 (18)C16—H16B0.9600
N4—C4'1.468 (18)C16—H16C0.9600
N5—C6'1.444 (18)C16'—H16D0.9600
N5—C61.453 (18)C16'—H16E0.9600
N5—C51.462 (18)C16'—H16F0.9600
N5—C5'1.473 (18)C17—H17A0.9600
N6—C71.439 (16)C17—H17B0.9600
N6—C81.473 (16)C17—H17C0.9600
N7—C101.440 (14)C17'—H17D0.9600
N7—C91.441 (14)C17'—H17E0.9600
N8—C111.447 (14)C17'—H17F0.9600
N8—C121.464 (12)C18—H18A0.9600
N9—C13'1.33 (4)C18—H18B0.9600
N9—C141.42 (5)C18—H18C0.9600
N9—C14'1.61 (4)C18'—H18D0.9600
N9—C131.66 (4)C18'—H18E0.9600
N10—C161.427 (17)C18'—H18F0.9600
N10—C151.484 (17)C19—H19A0.9600
N10'—C15'1.479 (17)C19—H19B0.9600
N10'—C16'1.481 (17)C19—H19C0.9600
N11—C171.436 (18)C19'—H19D0.9600
N11—C181.464 (18)C19'—H19E0.9600
N11'—C18'1.443 (18)C19'—H19F0.9600
N11'—C17'1.458 (18)C20—H20A0.9600
N12—C191.429 (19)C20—H20B0.9600
N12—C201.450 (18)C20—H20C0.9600
N12'—C19'1.421 (18)C20'—H20D0.9600
N12'—C20'1.429 (19)C20'—H20E0.9600
N12'—N141.85 (3)C20'—H20F0.9600
N13—C211.435 (17)C21—H21A0.9600
N13—C221.460 (19)C21—H21B0.9600
N13'—C21'1.439 (17)C21—H21C0.9600
N13'—C22'1.459 (18)C21'—H21D0.9600
N14—C231.440 (18)C21'—H21E0.9600
N14—C241.457 (18)C21'—H21F0.9600
N14'—C24'1.454 (18)C22—H22A0.9600
N14'—C23'1.456 (18)C22—H22B0.9600
C1—H1A0.9600C22—H22C0.9600
C1—H1B0.9600C22'—H22D0.9600
C1—H1C0.9600C22'—H22E0.9600
C1'—H1'A0.9600C22'—H22F0.9600
C1'—H1'B0.9600C23—H23A0.9600
C1'—H1'C0.9600C23—H23B0.9600
C2—H2A0.9600C23—H23C0.9600
C2—H2B0.9600C23'—H23D0.9600
C2—H2C0.9600C23'—H23E0.9600
C2'—H2'A0.9600C23'—H23G0.9600
C2'—H2'B0.9600C24—H24A0.9600
C2'—H2'C0.9600C24—H24D0.9600
C3—H3A0.9600C24—H24B0.9600
C3—H3B0.9600C24'—H24C0.9600
C3—H3C0.9600C24'—H24G0.9600
C3'—H3'A0.9600C24'—H24E0.9600
C3'—H3'B0.9600
S1—W1—S2110.48 (10)H1'A—C1'—H1'C109.5
S1—W1—S4108.31 (11)H1'B—C1'—H1'C109.5
S2—W1—S4108.46 (12)N3—C2—H2A109.5
S1—W1—S3108.21 (10)N3—C2—H2B109.5
S2—W1—S3108.31 (10)H2A—C2—H2B109.5
S4—W1—S3113.08 (9)N3—C2—H2C109.5
S1—W1—Ag1i124.56 (8)H2A—C2—H2C109.5
S2—W1—Ag1i124.95 (7)H2B—C2—H2C109.5
S4—W1—Ag1i55.59 (6)N3—C2'—H2'A109.5
S3—W1—Ag1i57.48 (7)N3—C2'—H2'B109.5
S1—W1—Ag158.54 (7)H2'A—C2'—H2'B109.5
S2—W1—Ag158.30 (7)N3—C2'—H2'C109.5
S4—W1—Ag1100.30 (6)H2'A—C2'—H2'C109.5
S3—W1—Ag1146.63 (7)H2'B—C2'—H2'C109.5
Ag1i—W1—Ag1155.891 (14)N4—C3—H3A109.5
O8—La1—O9156.8 (2)N4—C3—H3B109.5
O8—La1—O1092.8 (2)H3A—C3—H3B109.5
O9—La1—O1088.5 (2)N4—C3—H3C109.5
O8—La1—O794.8 (2)H3A—C3—H3C109.5
O9—La1—O792.2 (2)H3B—C3—H3C109.5
O10—La1—O7158.6 (2)N4—C3'—H3'A109.5
O8—La1—O279.6 (2)N4—C3'—H3'B109.5
O9—La1—O281.0 (3)H3'A—C3'—H3'B109.5
O10—La1—O2126.6 (2)N4—C3'—H3'C109.5
O7—La1—O274.6 (2)H3'A—C3'—H3'C109.5
O8—La1—O176.8 (2)H3'B—C3'—H3'C109.5
O9—La1—O180.9 (2)N4—C4—H4A109.5
O10—La1—O177.6 (3)N4—C4—H4B109.5
O7—La1—O1123.6 (3)H4A—C4—H4B109.5
O2—La1—O149.0 (3)N4—C4—H4C109.5
O8—La1—O576.4 (2)H4A—C4—H4C109.5
O9—La1—O5126.5 (2)H4B—C4—H4C109.5
O10—La1—O580.1 (2)N4—C4'—H4'A109.5
O7—La1—O582.4 (2)N4—C4'—H4'B109.5
O2—La1—O5145.0 (3)H4'A—C4'—H4'B109.5
O1—La1—O5143.9 (3)N4—C4'—H4'C109.5
O8—La1—O4125.0 (2)H4'A—C4'—H4'C109.5
O9—La1—O478.0 (2)H4'B—C4'—H4'C109.5
O10—La1—O478.5 (2)N5—C5—H5A109.5
O7—La1—O480.7 (2)N5—C5—H5B109.5
O2—La1—O4146.7 (3)H5A—C5—H5B109.5
O1—La1—O4148.4 (3)N5—C5—H5C109.5
O5—La1—O448.6 (2)H5A—C5—H5C109.5
O8—La1—N175.8 (2)H5B—C5—H5C109.5
O9—La1—N181.2 (2)N5—C5'—H5'A109.5
O10—La1—N1102.2 (3)N5—C5'—H5'B109.5
O7—La1—N199.1 (3)H5'A—C5'—H5'B109.5
O2—La1—N124.5 (3)N5—C5'—H5'C109.5
O1—La1—N124.5 (3)H5'A—C5'—H5'C109.5
O5—La1—N1152.2 (2)H5'B—C5'—H5'C109.5
O4—La1—N1159.2 (3)N5—C6—H6A109.5
O8—La1—N2100.7 (3)N5—C6—H6B109.5
O9—La1—N2102.1 (3)H6A—C6—H6B109.5
O10—La1—N276.0 (2)N5—C6—H6C109.5
O7—La1—N282.9 (2)H6A—C6—H6C109.5
O2—La1—N2157.4 (2)H6B—C6—H6C109.5
O1—La1—N2153.4 (3)N5—C6'—H6'A109.5
O5—La1—N224.5 (2)N5—C6'—H6'B109.5
O4—La1—N224.3 (2)H6'A—C6'—H6'B109.5
N1—La1—N2176.1 (3)N5—C6'—H6'C109.5
S4ii—Ag1—S3ii92.94 (8)H6'A—C6'—H6'C109.5
S4ii—Ag1—S2118.81 (10)H6'B—C6'—H6'C109.5
S3ii—Ag1—S2121.20 (10)N6—C7—H7A109.5
S4ii—Ag1—S1119.66 (9)N6—C7—H7B109.5
S3ii—Ag1—S1120.22 (10)H7A—C7—H7B109.5
S2—Ag1—S186.98 (8)N6—C7—H7C109.5
S4ii—Ag1—W1ii46.65 (6)H7A—C7—H7C109.5
S3ii—Ag1—W1ii46.29 (5)H7B—C7—H7C109.5
S2—Ag1—W1ii136.59 (7)N6—C8—H8A109.5
S1—Ag1—W1ii136.41 (6)N6—C8—H8B109.5
S4ii—Ag1—W1147.41 (7)H8A—C8—H8B109.5
S3ii—Ag1—W1119.66 (6)N6—C8—H8C109.5
S2—Ag1—W145.64 (6)H8A—C8—H8C109.5
S1—Ag1—W145.43 (5)H8B—C8—H8C109.5
W1ii—Ag1—W1165.95 (3)N7—C9—H9A109.5
W1—S1—Ag176.03 (8)N7—C9—H9B109.5
W1—S2—Ag176.06 (8)H9A—C9—H9B109.5
W1—S3—Ag1i76.23 (7)N7—C9—H9C109.5
W1—S4—Ag1i77.76 (7)H9A—C9—H9C109.5
O7—P1—N4111.3 (5)H9B—C9—H9C109.5
O7—P1—N5110.2 (5)N7—C10—H10A109.5
N4—P1—N5113.4 (6)N7—C10—H10B109.5
O7—P1—N3112.9 (6)H10A—C10—H10B109.5
N4—P1—N3102.4 (7)N7—C10—H10C109.5
N5—P1—N3106.4 (8)H10A—C10—H10C109.5
O8—P2—N6111.6 (4)H10B—C10—H10C109.5
O8—P2—N8108.7 (4)N8—C11—H11A109.5
N6—P2—N8108.9 (4)N8—C11—H11B109.5
O8—P2—N7111.4 (4)H11A—C11—H11B109.5
N6—P2—N7107.1 (5)N8—C11—H11C109.5
N8—P2—N7109.0 (5)H11A—C11—H11C109.5
O9—P3—N10112.5 (8)H11B—C11—H11C109.5
O9—P3—N10'109.7 (7)N8—C12—H12A109.5
N10—P3—N10'31.3 (9)N8—C12—H12B109.5
O9—P3—N9116.7 (5)H12A—C12—H12B109.5
N10—P3—N9119.5 (9)N8—C12—H12C109.5
N10'—P3—N997.9 (9)H12A—C12—H12C109.5
O9—P3—N11109.9 (8)H12B—C12—H12C109.5
N10—P3—N11110.2 (11)N9—C13—H13A109.5
N10'—P3—N11134.4 (11)N9—C13—H13B109.5
N9—P3—N1183.9 (10)H13A—C13—H13B109.5
O9—P3—N11'109.7 (8)N9—C13—H13C109.5
N10—P3—N11'90.4 (11)H13A—C13—H13C109.5
N10'—P3—N11'119.1 (10)H13B—C13—H13C109.5
N9—P3—N11'103.6 (10)N9—C13'—H13D109.5
N11—P3—N11'22.8 (10)N9—C13'—H13E109.5
O10—P4—N13110.3 (8)H13D—C13'—H13E109.5
O10—P4—N12'121.0 (9)N9—C13'—H13F109.5
N13—P4—N12'125.9 (11)H13D—C13'—H13F109.5
O10—P4—N14'113.7 (9)H13E—C13'—H13F109.5
N13—P4—N14'60.4 (10)N9—C14—H14A109.5
N12'—P4—N14'108.7 (12)N9—C14—H14B109.5
O10—P4—N14105.9 (9)H14A—C14—H14B109.5
N13—P4—N14111.7 (11)N9—C14—H14C109.5
N12'—P4—N1470.8 (12)H14A—C14—H14C109.5
N14'—P4—N1452.4 (10)H14B—C14—H14C109.5
O10—P4—N12107.3 (8)N9—C14'—H14D109.5
N13—P4—N12115.3 (11)N9—C14'—H14E109.5
N12'—P4—N1235.3 (10)H14D—C14'—H14E109.5
N14'—P4—N12137.4 (11)N9—C14'—H14F109.5
N14—P4—N12105.9 (11)H14D—C14'—H14F109.5
O10—P4—N13'109.3 (7)H14E—C14'—H14F109.5
N13—P4—N13'44.9 (8)N10—C15—H15A109.5
N12'—P4—N13'99.4 (11)N10—C15—H15B109.5
N14'—P4—N13'102.2 (10)H15A—C15—H15B109.5
N14—P4—N13'143.2 (10)N10—C15—H15C109.5
N12—P4—N13'73.8 (10)H15A—C15—H15C109.5
N1—O1—La195.5 (6)H15B—C15—H15C109.5
N1—O2—La195.9 (6)N10'—C15'—H15D109.5
N2—O4—La197.0 (5)N10'—C15'—H15E109.5
N2—O5—La196.9 (6)H15D—C15'—H15E109.5
P1—O7—La1171.3 (4)N10'—C15'—H15F109.5
P2—O8—La1167.2 (4)H15D—C15'—H15F109.5
P3—O9—La1162.0 (4)H15E—C15'—H15F109.5
P4—O10—La1169.1 (4)N10—C16—H16A109.5
O3—N1—O1121.2 (11)N10—C16—H16B109.5
O3—N1—O2119.5 (11)H16A—C16—H16B109.5
O1—N1—O2119.3 (8)N10—C16—H16C109.5
O3—N1—La1173.8 (7)H16A—C16—H16C109.5
O1—N1—La160.0 (5)H16B—C16—H16C109.5
O2—N1—La159.5 (5)N10'—C16'—H16D109.5
O6—N2—O4123.2 (9)N10'—C16'—H16E109.5
O6—N2—O5120.2 (10)H16D—C16'—H16E109.5
O4—N2—O5116.6 (8)N10'—C16'—H16F109.5
O6—N2—La1171.5 (7)H16D—C16'—H16F109.5
O4—N2—La158.7 (4)H16E—C16'—H16F109.5
O5—N2—La158.7 (5)N11—C17—H17A109.5
C1'—N3—C225 (3)N11—C17—H17B109.5
C1'—N3—C190 (3)H17A—C17—H17B109.5
C2—N3—C1109 (3)N11—C17—H17C109.5
C1'—N3—C2'95 (3)H17A—C17—H17C109.5
C2—N3—C2'75 (3)H17B—C17—H17C109.5
C1—N3—C2'104 (3)N11'—C17'—H17D109.5
C1'—N3—P1130 (3)N11'—C17'—H17E109.5
C2—N3—P1122 (3)H17D—C17'—H17E109.5
C1—N3—P1125 (2)N11'—C17'—H17F109.5
C2'—N3—P1106 (2)H17D—C17'—H17F109.5
C3—N4—C3'29.8 (17)H17E—C17'—H17F109.5
C3—N4—C4116 (2)N11—C18—H18A109.5
C3'—N4—C4126 (2)N11—C18—H18B109.5
C3—N4—C4'101 (2)H18A—C18—H18B109.5
C3'—N4—C4'101 (2)N11—C18—H18C109.5
C4—N4—C4'27 (2)H18A—C18—H18C109.5
C3—N4—P1128.9 (15)H18B—C18—H18C109.5
C3'—N4—P1118.6 (15)N11'—C18'—H18D109.5
C4—N4—P1112.8 (19)N11'—C18'—H18E109.5
C4'—N4—P1129.5 (19)H18D—C18'—H18E109.5
C6'—N5—C616 (3)N11'—C18'—H18F109.5
C6'—N5—C5101 (3)H18D—C18'—H18F109.5
C6—N5—C5102 (3)H18E—C18'—H18F109.5
C6'—N5—C5'129 (3)N12—C19—H19A109.5
C6—N5—C5'121 (3)N12—C19—H19B109.5
C5—N5—C5'37.1 (17)H19A—C19—H19B109.5
C6'—N5—P1119 (2)N12—C19—H19C109.5
C6—N5—P1126 (2)H19A—C19—H19C109.5
C5—N5—P1129.0 (17)H19B—C19—H19C109.5
C5'—N5—P1111.9 (18)N12'—C19'—H19D109.5
C7—N6—C8117.2 (11)N12'—C19'—H19E109.5
C7—N6—P2119.2 (9)H19D—C19'—H19E109.5
C8—N6—P2123.2 (10)N12'—C19'—H19F109.5
C10—N7—C9113.8 (10)H19D—C19'—H19F109.5
C10—N7—P2120.4 (8)H19E—C19'—H19F109.5
C9—N7—P2125.7 (8)N12—C20—H20A109.5
C11—N8—C12115.6 (9)N12—C20—H20B109.5
C11—N8—P2121.1 (7)H20A—C20—H20B109.5
C12—N8—P2121.4 (8)N12—C20—H20C109.5
C13'—N9—C1480 (3)H20A—C20—H20C109.5
C13'—N9—C14'113 (3)H20B—C20—H20C109.5
C14—N9—C14'38 (2)N12'—C20'—H20D109.5
C13'—N9—P3138 (2)N12'—C20'—H20E109.5
C14—N9—P3126 (2)H20D—C20'—H20E109.5
C14'—N9—P3103.9 (19)N12'—C20'—H20F109.5
C13'—N9—C1338.1 (18)H20D—C20'—H20F109.5
C14—N9—C13118 (3)H20E—C20'—H20F109.5
C14'—N9—C13147 (2)N13—C21—H21A109.5
P3—N9—C13109.1 (18)N13—C21—H21B109.5
C16—N10—C15115 (2)H21A—C21—H21B109.5
C16—N10—P3122.2 (18)N13—C21—H21C109.5
C15—N10—P3122.8 (18)H21A—C21—H21C109.5
C15'—N10'—C16'117 (2)H21B—C21—H21C109.5
C15'—N10'—P3124.0 (18)N13'—C21'—H21D109.5
C16'—N10'—P3117.4 (17)N13'—C21'—H21E109.5
C17—N11—C18111 (3)H21D—C21'—H21E109.5
C17—N11—P3127 (2)N13'—C21'—H21F109.5
C18—N11—P3118 (2)H21D—C21'—H21F109.5
C18'—N11'—C17'116 (3)H21E—C21'—H21F109.5
C18'—N11'—P3119 (2)N13—C22—H22A109.5
C17'—N11'—P3122 (2)N13—C22—H22B109.5
C19—N12—C20108 (3)H22A—C22—H22B109.5
C19—N12—P4131 (2)N13—C22—H22C109.5
C20—N12—P4120 (2)H22A—C22—H22C109.5
C19'—N12'—C20'103 (3)H22B—C22—H22C109.5
C19'—N12'—P4126 (2)N13'—C22'—H22D109.5
C20'—N12'—P4121 (3)N13'—C22'—H22E109.5
C19'—N12'—N1470 (2)H22D—C22'—H22E109.5
C20'—N12'—N14133 (3)N13'—C22'—H22F109.5
P4—N12'—N1456.8 (10)H22D—C22'—H22F109.5
C21—N13—C22114 (2)H22E—C22'—H22F109.5
C21—N13—P4121.2 (18)N14—C23—H23A109.5
C22—N13—P4122 (2)N14—C23—H23B109.5
C21'—N13'—C22'112 (2)H23A—C23—H23B109.5
C21'—N13'—P4121.8 (17)N14—C23—H23C109.5
C22'—N13'—P4126 (2)H23A—C23—H23C109.5
C23—N14—C24100 (3)H23B—C23—H23C109.5
C23—N14—P4137 (2)N14'—C23'—H23D109.5
C24—N14—P4121 (2)N14'—C23'—H23E109.5
C23—N14—N12'90 (2)H23D—C23'—H23E109.5
C24—N14—N12'169 (3)N14'—C23'—H23G109.5
P4—N14—N12'52.3 (10)H23D—C23'—H23G109.5
C24'—N14'—C23'116 (3)H23E—C23'—H23G109.5
C24'—N14'—P4115 (2)N14—C24—H24A109.5
C23'—N14'—P4127 (2)N14—C24—H24D109.5
N3—C1—H1A109.5H24A—C24—H24D109.5
N3—C1—H1B109.5N14—C24—H24B109.5
H1A—C1—H1B109.5H24A—C24—H24B109.5
N3—C1—H1C109.5H24D—C24—H24B109.5
H1A—C1—H1C109.5N14'—C24'—H24C109.5
H1B—C1—H1C109.5N14'—C24'—H24G109.5
N3—C1'—H1'A109.5H24C—C24'—H24G109.5
N3—C1'—H1'B109.5N14'—C24'—H24E109.5
H1'A—C1'—H1'B109.5H24C—C24'—H24E109.5
N3—C1'—H1'C109.5H24G—C24'—H24E109.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[La(NO3)2(C6H18N3OP)4][AgWS4]
Mr1399.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.883 (2), 30.070 (4), 11.5283 (15)
β (°) 90.502 (3)
V3)5505.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.50 × 0.42 × 0.38
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.18, 0.26
No. of measured, independent and
observed [I > 2σ(I)] reflections
50056, 10031, 8984
Rint0.049
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.137, 1.15
No. of reflections10031
No. of parameters462
No. of restraints32
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0507P)2 + 23.8085P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.07, 1.90

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

 

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 50472048) and the Program for New Century Excellent Talents in Universities (NCET-05-0499).

References

First citationHuang, Q., Wu, X. T., Sheng, T. L., Wang, Q. M. & Lu, J. X. (1997). Polyhedron, 16, 217–222.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuang, Q., Wu, X. T., Wang, Q. M., Sheng, T. L. & Lu, J. X. (1996). Angew. Chem. Int. Ed. Engl. 35, 868–870.  CSD CrossRef CAS Web of Science Google Scholar
First citationLang, J. P., Li, J. G., Bao, S. A., Xin, X. Q. & Yu, K. B. (1993). Polyhedron, 12, 801–806.  CAS Google Scholar
First citationNiu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169–183.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhang, J.-F., Cao, Y., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2248–m2249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Qian, J., Cao, Y. & Zhang, C. (2007). Acta Cryst. E63, m2386–m2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m399-m400
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds