organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzhydryl-4-(4-chloro­phenyl­sulfonyl)piperazine

aDepartment of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: rangappaks@gmail.com

(Received 10 December 2007; accepted 20 December 2007; online 4 January 2008)

The title compound, C23H23ClN2O2S, was synthesized by the nucleophilic substitution of 1-benzhydrylpiperazine with 4-chloro­phenyl­sulfonyl chloride. The piperazine ring is in a chair conformation. The geometry around the S atom is that of a distorted tetra­hedron. There is a large range of bond angles around the piperazine N atoms. The dihedral angle between the least-squares plane (p1) defined by the four coplanar C atoms of the piperazine ring and the benzene ring is 81.6 (1)°. The dihedral angles between p1 and the phenyl rings are 76.2 (1) and 72.9 (2)°. The two phenyl rings make a dihedral angle of 65.9 (1)°. Intramolecular C—H⋯O hydrogen bonds are present.

Related literature

For related literature, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley & Sons.]); Berkheij et al. (2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.]); Campbell et al. (1973[Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170-176.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Dinsmore & Beshore (2002[Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.]); Humle & Cherrier (1999[Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.]); Katzung (1995[Katzung, B. G. (1995). Basic and Clinical Pharmacology, 6th ed. San Francisco: University of California.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23ClN2O2S

  • Mr = 426.94

  • Monoclinic, P 21 /c

  • a = 9.392 (7) Å

  • b = 13.114 (10) Å

  • c = 19.225 (11) Å

  • β = 113.645 (3)°

  • V = 2169 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • Absorption correction: none

  • 7255 measured reflections

  • 3818 independent reflections

  • 2917 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.147

  • S = 1.08

  • 3818 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O8 0.97 2.49 2.890 (3) 105
C6—H6B⋯O9 0.97 2.56 2.965 (3) 105
C11—H11⋯O9 0.93 2.53 2.905 (3) 104

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore et al., 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). 1-Benzylpiperazine was originally synthesized as a potential antihelminthic (Campbell et al., 1973) and these derivatives were found to possess excellent pharmacological activities such as vasodilator, hypotensive, antiviral activity and cerebral blood flow increasing actions, broad pharmacological action on central nerves system (CNS), especially on dopaminergic neurotransmission. Sulfonamides are among the most widely used antibacterial agents (Katzung et al., 1995). Piperazine sulfonamides exhibit diverse therapeutic activity such as antibacterial activity, MMP-3 inhibition and carbonic anhydrase inhibition. Encouraged by the above information, the title compound was synthesized and herein we report its crystal structure.

A perspective view of the title compound is shown in Fig. 1. A study of torsion angles, asymmetry parameters and least-squares plane calculations reveal that the piperazine ring in the structure is in a chair conformation. This has been confirmed by the puckering paramaters q2=0.0291 (24) Å, q3=0.5969 (26) Å, QT=0.5977 (26) Å, θ=3.07 (23)° and ϕ=198 (5)° (Cremer & Pople, 1975). The conformation of the attachment of the diphenylmethyl and the sulfonyl groups to the piperazine ring are best described by the torsion angle values of 166.6 (2)° and -177.4 (2)° for S7—N1—C2—C3 and C17—N4—C5—C6, respectively; i.e. they adopt +antiperiplanar and -antiperiplanar conformations, respectively. The bonds N1—S7 and N4—C17 connecting the sulfonyl and the diphenyl groups make angles of 86.00 (11)° and 72.92 (14)°, respectively, with the Cremer and Pople plane of the piperazine ring and thus are in the equatorial plane of the piperazine ring.

The bond angles about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviations being observed for O9—S7—O8 [119.92 (12)°] and 09—S7—C10 [107.88 (12)°]. The widening of O8—S7—O9 is due to the repulsive interactions between the S?O bonds and the non-bonded interactions involving the two S?O bonds and the varied steric hindrance of the substituents. The structure thus has less steric interference. The reduction of the N1—S7—C10 angle from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale, 1984). The sulfonyl O atoms, O8 and O9, are oriented in -synclinal and +synclinal conformations, respectively, as indicated by the torsion angle values of -42.1 (2)° and 53.96 (19)° for C2—N1—S7—O8 and C6—N1—S7—O9, respectively.

Related literature top

For related literature, see: Bassindale (1984); Berkheij et al. (2005); Campbell et al. (1973); Cremer & Pople (1975); Dinsmore & Beshore (2002); Humle & Cherrier (1999); Katzung (1995).

Experimental top

A solution of 1-benzhydryl-piperazine (0.5 g, 1.98 mmol) in dry dichloromethane was taken, and cooled to 0–5° C in an ice bath. Then triethylamine (0.601 g, 5.94 mmol) was added to the cold reaction mixture and stirred for 10 minutes. Then 4-chloro-benzenesulfonyl chloride (0.417 g, 1.98 mmol) was added. The reaction mixture was stirred at room temperature for 5 hrs. The reaction mixture was monitored by TLC. On completion of the reaction, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally water wash was given to organic layer and dried with anhydrous sodium sulfate. The solvent was evaporated to get crude product, which was purified by column chromatography over silica gel using hexane: ethyl acetate (8:2) as an eluent. Pure white crystals were obtained due to the slow evaporation of the solvent with a yield of 90%. M.p. 428.1 K.

1HNMR (DMSO, 400 MHz): δ 7.7–7.8 (m, 4H, Ar—H), 7.4 (d, 4H, Ar—H), 7.25(t, 4H, Ar—H), 7.16 (t, 2H, Ar—H), 4.32 (s, 1H, –CH), 3.32 (dd, 4H, –CH2), 2.41 (dd, 4H, –CH2).

MS (ESI + ion): m/z = 427.9

IR (KBr, cm1): 2961, 2889, 1350, 1279, 707.

Anal. Calcd.for C23H23ClN2O2S (in %): C-59.87, H-4.81, N-6.07, S-6.95. Found C-59.82, H-4.78, N-6.04, S-6.90%.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.97 Å and O—H = 0.82 Å; Uiso(H) values were set equal to 1.2Ueq(carrier atom).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
1-Benzhydryl-4-(4-chlorophenylsulfonyl)piperazine top
Crystal data top
C23H23ClN2O2SF(000) = 896
Mr = 426.94Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 ybcCell parameters from 7255 reflections
a = 9.392 (7) Åθ = 2.3–25.0°
b = 13.114 (10) ŵ = 0.29 mm1
c = 19.225 (11) ÅT = 295 K
β = 113.645 (3)°Block, white
V = 2169 (3) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
MacScience DIPLabo 32001
diffractometer
2917 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
Detector resolution: 10.0 pixels mm-1h = 1111
ω scansk = 1515
7255 measured reflectionsl = 2222
3818 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.4503P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3818 reflectionsΔρmax = 0.33 e Å3
263 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.065 (4)
Crystal data top
C23H23ClN2O2SV = 2169 (3) Å3
Mr = 426.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.392 (7) ŵ = 0.29 mm1
b = 13.114 (10) ÅT = 295 K
c = 19.225 (11) Å0.25 × 0.20 × 0.20 mm
β = 113.645 (3)°
Data collection top
MacScience DIPLabo 32001
diffractometer
2917 reflections with I > 2σ(I)
7255 measured reflectionsRint = 0.024
3818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3818 reflectionsΔρmin = 0.27 e Å3
263 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The observed criterion of F^2 > σ(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl160.45997 (9)0.44356 (6)0.31602 (5)0.0932 (3)
S70.02536 (7)0.06459 (5)0.20336 (3)0.0673 (2)
O80.12416 (19)0.08971 (15)0.20131 (11)0.0815 (7)
O90.0391 (2)0.02536 (16)0.13714 (9)0.0878 (7)
N10.1012 (2)0.02030 (15)0.27063 (10)0.0592 (6)
N40.28463 (19)0.12983 (14)0.40601 (10)0.0540 (6)
C20.0814 (3)0.00363 (19)0.34202 (13)0.0639 (8)
C30.1236 (3)0.09986 (19)0.38885 (13)0.0602 (8)
C50.2974 (3)0.14861 (19)0.33344 (12)0.0611 (8)
C60.2608 (3)0.05271 (19)0.28593 (13)0.0631 (8)
C100.1441 (3)0.17362 (19)0.23278 (12)0.0601 (8)
C110.2522 (3)0.1935 (2)0.20299 (16)0.0773 (10)
C120.3485 (4)0.2768 (2)0.22841 (18)0.0847 (12)
C130.3378 (3)0.3395 (2)0.28381 (14)0.0670 (8)
C140.2302 (3)0.3203 (2)0.31371 (13)0.0652 (8)
C150.1327 (3)0.23722 (19)0.28775 (13)0.0631 (8)
C170.3273 (2)0.22232 (17)0.45406 (12)0.0563 (7)
C180.3073 (3)0.20476 (18)0.52750 (12)0.0569 (7)
C190.3666 (3)0.1188 (2)0.57137 (15)0.0762 (10)
C200.3439 (4)0.1023 (3)0.63736 (15)0.0896 (11)
C210.2629 (3)0.1724 (3)0.66053 (16)0.0884 (13)
C220.2052 (3)0.2577 (3)0.61814 (18)0.0877 (11)
C230.2268 (3)0.2744 (2)0.55178 (16)0.0725 (9)
C240.4921 (2)0.25730 (17)0.46936 (12)0.0556 (7)
C250.5204 (3)0.3596 (2)0.46298 (15)0.0710 (9)
C260.6693 (4)0.3932 (2)0.47724 (17)0.0849 (11)
C270.7892 (3)0.3270 (3)0.49653 (15)0.0819 (13)
C280.7633 (3)0.2248 (3)0.50267 (15)0.0785 (10)
C290.6157 (3)0.1903 (2)0.48981 (14)0.0700 (8)
H2A0.025500.014700.330900.0770*
H2B0.147800.051900.370200.0770*
H3A0.110700.089000.435900.0720*
H3B0.054100.154400.361300.0720*
H5A0.225800.202300.306000.0730*
H5B0.402000.171100.342900.0730*
H6A0.333300.000800.312800.0760*
H6B0.270900.065600.238500.0760*
H110.260100.151000.166000.0930*
H120.421200.290900.208200.1020*
H140.222900.362600.351000.0780*
H150.058800.223900.307400.0760*
H170.255900.277000.426300.0680*
H190.422400.071500.556400.0910*
H200.383300.043800.666000.1080*
H210.247700.161600.704900.1060*
H220.150700.305200.633800.1050*
H230.186700.332900.523400.0870*
H250.438900.406100.449000.0850*
H260.687000.462400.473500.1020*
H270.888600.350400.505600.0980*
H280.845300.178800.515500.0940*
H290.599500.121300.495000.0840*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl160.0815 (5)0.0828 (5)0.1088 (6)0.0121 (4)0.0313 (4)0.0117 (4)
S70.0656 (4)0.0731 (4)0.0505 (4)0.0021 (3)0.0100 (3)0.0025 (3)
O80.0547 (10)0.0906 (13)0.0809 (12)0.0060 (9)0.0079 (8)0.0115 (10)
O90.1093 (14)0.0931 (13)0.0481 (9)0.0001 (12)0.0181 (9)0.0040 (10)
N10.0570 (11)0.0656 (11)0.0507 (10)0.0035 (9)0.0170 (8)0.0024 (9)
N40.0527 (10)0.0602 (11)0.0488 (9)0.0038 (8)0.0199 (8)0.0002 (8)
C20.0625 (13)0.0731 (15)0.0598 (13)0.0111 (11)0.0283 (11)0.0045 (12)
C30.0561 (13)0.0687 (14)0.0586 (13)0.0073 (11)0.0258 (10)0.0003 (12)
C50.0633 (14)0.0705 (14)0.0511 (12)0.0099 (11)0.0247 (10)0.0015 (11)
C60.0602 (14)0.0752 (16)0.0552 (13)0.0064 (11)0.0246 (10)0.0004 (12)
C100.0624 (13)0.0664 (14)0.0488 (12)0.0087 (11)0.0196 (10)0.0103 (11)
C110.0962 (19)0.0804 (18)0.0711 (16)0.0040 (15)0.0502 (15)0.0042 (15)
C120.091 (2)0.089 (2)0.096 (2)0.0023 (16)0.0603 (17)0.0113 (18)
C130.0623 (14)0.0679 (15)0.0674 (15)0.0039 (12)0.0226 (12)0.0163 (13)
C140.0719 (15)0.0680 (15)0.0563 (13)0.0042 (12)0.0264 (11)0.0023 (12)
C150.0621 (14)0.0718 (15)0.0606 (13)0.0049 (12)0.0299 (11)0.0057 (12)
C170.0547 (12)0.0559 (12)0.0539 (12)0.0037 (10)0.0171 (9)0.0030 (10)
C180.0503 (12)0.0650 (14)0.0533 (12)0.0016 (10)0.0186 (9)0.0083 (11)
C190.0865 (18)0.0880 (18)0.0602 (14)0.0231 (15)0.0359 (13)0.0095 (14)
C200.093 (2)0.118 (2)0.0596 (15)0.0119 (18)0.0325 (14)0.0179 (17)
C210.0703 (17)0.139 (3)0.0609 (15)0.0153 (18)0.0315 (13)0.0205 (19)
C220.0742 (18)0.112 (2)0.090 (2)0.0156 (17)0.0467 (16)0.040 (2)
C230.0617 (14)0.0716 (16)0.0852 (18)0.0061 (12)0.0305 (13)0.0190 (14)
C240.0558 (12)0.0585 (13)0.0482 (11)0.0026 (10)0.0164 (9)0.0009 (10)
C250.0751 (16)0.0623 (14)0.0759 (16)0.0023 (12)0.0306 (13)0.0057 (13)
C260.087 (2)0.0782 (18)0.090 (2)0.0235 (16)0.0360 (16)0.0004 (16)
C270.0639 (16)0.113 (3)0.0660 (16)0.0199 (16)0.0230 (13)0.0014 (16)
C280.0571 (15)0.101 (2)0.0690 (16)0.0054 (14)0.0166 (12)0.0045 (15)
C290.0605 (14)0.0712 (15)0.0726 (15)0.0041 (12)0.0207 (12)0.0055 (13)
Geometric parameters (Å, º) top
Cl16—C131.730 (3)C25—C261.385 (5)
S7—O81.427 (2)C26—C271.351 (5)
S7—O91.4261 (18)C27—C281.376 (6)
S7—N11.637 (2)C28—C291.383 (4)
S7—C101.761 (3)C2—H2A0.9692
N1—C21.473 (3)C2—H2B0.9704
N1—C61.470 (4)C3—H3A0.9701
N4—C31.466 (4)C3—H3B0.9700
N4—C51.468 (3)C5—H5A0.9704
N4—C171.479 (3)C5—H5B0.9705
C2—C31.508 (3)C6—H6A0.9699
C5—C61.511 (3)C6—H6B0.9687
C10—C111.376 (4)C11—H110.9296
C10—C151.384 (3)C12—H120.9296
C11—C121.377 (4)C14—H140.9305
C12—C131.381 (4)C15—H150.9302
C13—C141.372 (4)C17—H170.9806
C14—C151.381 (4)C19—H190.9291
C17—C181.515 (3)C20—H200.9302
C17—C241.526 (3)C21—H210.9305
C18—C191.384 (4)C22—H220.9297
C18—C231.381 (4)C23—H230.9291
C19—C201.385 (4)C25—H250.9300
C20—C211.376 (5)C26—H260.9306
C21—C221.362 (5)C27—H270.9303
C22—C231.387 (4)C28—H280.9303
C24—C251.383 (3)C29—H290.9296
C24—C291.381 (4)
Cl16···C26i3.629 (3)H2B···H6A2.4989
Cl16···H6Bii3.1028H2B···H152.5367
Cl16···H20iii2.9831H3A···C182.4914
O8···H2A2.4862H3A···C192.7733
O8···H152.7200H3B···H5A2.3453
O8···H5Aiv2.8746H3B···H172.4164
O8···H17iv2.8583H3B···C10x3.0203
O8···H21v2.6767H3B···C15x3.0457
O9···H6B2.5606H5A···H3B2.3453
O9···H112.5312H5A···H172.4216
N1···N42.865 (3)H5A···O8x2.8746
N4···N12.865 (3)H5B···C242.5009
N4···H192.7600H5B···C292.7426
N4···H292.7616H5B···H12ix2.2977
C2···C153.421 (4)H6A···C102.9100
C3···C193.341 (4)H6A···H2B2.4989
C5···C293.326 (4)H6A···C20vii3.0905
C6···C113.588 (4)H6A···H20vii2.5882
C11···C63.588 (4)H6B···O92.5606
C15···C23.421 (4)H6B···Cl16ix3.1028
C19···C293.428 (4)H6B···H22xi2.5247
C19···C33.341 (4)H11···O92.5312
C26···Cl16vi3.629 (3)H11···C27ii2.9834
C29···C193.428 (4)H12···H5Bii2.2977
C29···C53.326 (4)H14···C26vii3.0673
C2···H153.0460H14···C27vii3.0150
C10···H2B3.0749H15···O82.7200
C10···H6A2.9100H15···C23.0460
C10···H3Biv3.0203H15···H2B2.5367
C15···H3Biv3.0457H17···H3B2.4164
C15···H2B2.8738H17···H5A2.4216
C18···H3A2.4914H17···H232.3276
C19···H293.0851H17···H252.3258
C19···H3A2.7733H17···O8x2.8583
C20···H6Avii3.0905H19···N42.7600
C21···H2Av3.0936H19···C293.0375
C23···H27viii3.0998H19···H292.4822
C24···H5B2.5009H20···H6Avii2.5882
C26···H14vii3.0673H20···Cl16xii2.9831
C27···H14vii3.0150H21···O8v2.6767
C27···H11ix2.9834H22···H6Bxiii2.5247
C29···H5B2.7426H23···H172.3276
C29···H193.0375H25···H172.3258
H2A···O82.4862H27···C23xiv3.0998
H2A···C21v3.0936H29···N42.7616
H2B···C103.0749H29···C193.0851
H2B···C152.8738H29···H192.4822
O8—S7—O9119.92 (12)C3—C2—H2B109.79
O8—S7—N1106.87 (11)H2A—C2—H2B108.30
O8—S7—C10108.10 (13)N4—C3—H3A109.44
O9—S7—N1107.06 (11)N4—C3—H3B109.43
O9—S7—C10107.89 (12)C2—C3—H3A109.43
N1—S7—C10106.23 (11)C2—C3—H3B109.45
S7—N1—C2117.23 (16)H3A—C3—H3B108.00
S7—N1—C6116.13 (16)N4—C5—H5A109.60
C2—N1—C6110.86 (18)N4—C5—H5B109.59
C3—N4—C5107.52 (18)C6—C5—H5A109.59
C3—N4—C17110.91 (18)C6—C5—H5B109.52
C5—N4—C17110.54 (17)H5A—C5—H5B108.06
N1—C2—C3109.3 (2)N1—C6—H6A109.82
N4—C3—C2111.0 (2)N1—C6—H6B109.82
N4—C5—C6110.4 (2)C5—C6—H6A109.84
N1—C6—C5109.2 (2)C5—C6—H6B109.84
S7—C10—C11119.87 (19)H6A—C6—H6B108.34
S7—C10—C15120.1 (2)C10—C11—H11120.23
C11—C10—C15120.0 (2)C12—C11—H11120.31
C10—C11—C12119.5 (3)C11—C12—H12119.84
C11—C12—C13120.4 (3)C13—C12—H12119.79
Cl16—C13—C12120.2 (2)C13—C14—H14120.52
Cl16—C13—C14119.3 (2)C15—C14—H14120.37
C12—C13—C14120.5 (3)C10—C15—H15119.73
C13—C14—C15119.1 (2)C14—C15—H15119.73
C10—C15—C14120.5 (3)N4—C17—H17107.75
N4—C17—C18110.71 (18)C18—C17—H17107.76
N4—C17—C24111.52 (17)C24—C17—H17107.73
C18—C17—C24111.19 (18)C18—C19—H19119.61
C17—C18—C19121.5 (2)C20—C19—H19119.51
C17—C18—C23120.3 (2)C19—C20—H20120.01
C19—C18—C23118.3 (2)C21—C20—H20119.98
C18—C19—C20120.9 (3)C20—C21—H21120.20
C19—C20—C21120.0 (3)C22—C21—H21120.20
C20—C21—C22119.6 (3)C21—C22—H22119.68
C21—C22—C23120.7 (3)C23—C22—H22119.65
C18—C23—C22120.6 (3)C18—C23—H23119.71
C17—C24—C25119.4 (2)C22—C23—H23119.74
C17—C24—C29122.4 (2)C24—C25—H25119.78
C25—C24—C29118.2 (2)C26—C25—H25119.83
C24—C25—C26120.4 (2)C25—C26—H26119.51
C25—C26—C27121.0 (3)C27—C26—H26119.53
C26—C27—C28119.5 (3)C26—C27—H27120.19
C27—C28—C29120.2 (3)C28—C27—H27120.26
C24—C29—C28120.7 (3)C27—C28—H28119.90
N1—C2—H2A109.75C29—C28—H28119.94
N1—C2—H2B109.78C24—C29—H29119.65
C3—C2—H2A109.89C28—C29—H29119.65
O8—S7—N1—C242.1 (2)C10—C11—C12—C130.5 (4)
O9—S7—N1—C2171.75 (18)C11—C12—C13—C140.7 (4)
C10—S7—N1—C273.2 (2)C11—C12—C13—Cl16179.6 (2)
O8—S7—N1—C6176.37 (16)Cl16—C13—C14—C15179.9 (2)
O9—S7—N1—C653.96 (19)C12—C13—C14—C150.1 (4)
C10—S7—N1—C661.13 (19)C13—C14—C15—C100.5 (4)
O9—S7—C10—C1113.5 (2)N4—C17—C18—C1948.4 (3)
N1—S7—C10—C11101.0 (2)C24—C17—C18—C23104.7 (3)
O8—S7—C10—C1537.7 (2)N4—C17—C24—C25135.1 (2)
O9—S7—C10—C15168.8 (2)N4—C17—C24—C2945.2 (3)
N1—S7—C10—C1576.7 (2)C18—C17—C24—C25100.8 (2)
O8—S7—C10—C11144.6 (2)C18—C17—C24—C2978.9 (3)
S7—N1—C2—C3166.58 (18)N4—C17—C18—C23130.7 (2)
C6—N1—C2—C356.9 (3)C24—C17—C18—C1976.1 (3)
C2—N1—C6—C557.6 (2)C19—C18—C23—C220.6 (4)
S7—N1—C6—C5165.36 (15)C17—C18—C23—C22178.6 (3)
C3—N4—C5—C661.4 (3)C17—C18—C19—C20178.2 (3)
C17—N4—C3—C2178.14 (18)C23—C18—C19—C200.9 (4)
C5—N4—C3—C260.9 (2)C18—C19—C20—C210.7 (5)
C3—N4—C17—C24177.36 (17)C19—C20—C21—C220.1 (5)
C17—N4—C5—C6177.4 (2)C20—C21—C22—C230.2 (5)
C3—N4—C17—C1858.3 (2)C21—C22—C23—C180.0 (5)
C5—N4—C17—C18177.4 (2)C17—C24—C25—C26179.4 (2)
C5—N4—C17—C2458.2 (2)C25—C24—C29—C280.7 (4)
N1—C2—C3—N459.0 (3)C29—C24—C25—C260.3 (4)
N4—C5—C6—N160.3 (3)C17—C24—C29—C28179.5 (2)
S7—C10—C11—C12177.6 (2)C24—C25—C26—C271.0 (4)
C15—C10—C11—C120.1 (4)C25—C26—C27—C280.5 (4)
S7—C10—C15—C14177.0 (2)C26—C27—C28—C290.6 (4)
C11—C10—C15—C140.6 (4)C27—C28—C29—C241.2 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y, z+1; (vi) x, y1, z; (vii) x+1, y, z+1; (viii) x1, y, z; (ix) x+1, y1/2, z+1/2; (x) x, y1/2, z+1/2; (xi) x, y1/2, z1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y1/2, z+1/2; (xiv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O80.972.492.890 (3)105
C6—H6B···O90.972.562.965 (3)105
C11—H11···O90.932.532.905 (3)104

Experimental details

Crystal data
Chemical formulaC23H23ClN2O2S
Mr426.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.392 (7), 13.114 (10), 19.225 (11)
β (°) 113.645 (3)
V3)2169 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7255, 3818, 2917
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.147, 1.08
No. of reflections3818
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: XPRESS (MacScience, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEPII (Johnson, 1976), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O80.97002.49002.890 (3)105.00
C6—H6B···O90.97002.56002.965 (3)105.00
C11—H11···O90.93002.53002.905 (3)104.00
 

Acknowledgements

The authors are grateful to DST/CSIR, New Delhi, for financial support under the projects SP/I2/FOO/93 and 01(1904)/03/EMR-II 2004. The authors also acknowledge DST-FIST and UGC-SAP (phase I) for support with the collection of CHNS and IR data.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley & Sons.  Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.  CrossRef CAS Google Scholar
First citationCampbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170–176.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.  Web of Science CrossRef CAS Google Scholar
First citationHumle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295–5299.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKatzung, B. G. (1995). Basic and Clinical Pharmacology, 6th ed. San Francisco: University of California.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds