metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-11,23-Di­bromo-3,7,15,19-tetra­aza­tri­cyclo­[19.3.1.19,13]hexa­cosa-1(25),2,7,9,11,13(26),14,19,21,23-deca­ene-25,26-diolato-κ4N3,N7,O,O′:κ4O,O′,N15,N19]bis­[perchloratocopper(II)]

aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China, and bHubei Open Center for the Experimental Teaching of Fundamental Chemistry, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 14 December 2007; accepted 5 January 2008; online 11 January 2008)

The title complex, [Cu2(C22H20Br2N4O2)(ClO4)2], was prepared by the condensation of 2,6-diformyl-4-bromo­phenol with 1,3-diamino­propane in the presence of copper(II) ions. The macrocyclic ligand shows an approximately planar structure except for the two propene groups in the macrocycle. The coordination polyhedron of each Cu atom can be described as distorted square pyramidal. The two Cu atoms are bridged by two phenolate O atoms of the macrocycle, with a Cu⋯Cu distance of 3.109 (2) Å.

Related literature

For related literature, see: Chen et al. (2005[Chen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467-m1469.]); Taniguchi (1984[Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2689.]); Wang et al. (1997[Wang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem. 36, 629-636.]); Zhou et al. (2005[Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Y. Q. (2005). J. Coord. Chem. 58, 443-451.]); Mohanta et al. (1998[Mohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669-2677.]); Wada et al. (1995[Wada, H., Motada, K.-I., Ohba, M., Sakiyama, H., Matsumoto, N. & Ōkawa, H. (1995). Bull. Chem. Soc. Jpn, 68, 1105-1114.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C22H20Br2N4O2)(ClO4)2]

  • Mr = 858.22

  • Monoclinic, P 21 /c

  • a = 15.7760 (18) Å

  • b = 8.6253 (10) Å

  • c = 21.501 (3) Å

  • β = 110.901 (2)°

  • V = 2733.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.74 mm−1

  • T = 191 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.42, Tmax = 0.52

  • 15132 measured reflections

  • 5366 independent reflections

  • 3505 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.138

  • S = 1.03

  • 5366 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base macrocyclic ligands with two phenolic groups, capable of binding two metal ions in close coordination cavities simultaneously, are known to form various types of the transition metal complexes. These complexes can exhibit special optical, electric and magnetic properties (Mohanta et al., 1998; Wang et al., 1997).

Previous research shows that substituents on phenolic group has influences the structure and properties of these macrocyclic complexes. Much work have been done on this kind of complexes where the substituents in the phenolic group are found to be methyl, chlorine and n-butyl but few examples of bromide substituents are reported (Zhou et al., 2005; Chen et al., 2005).

In this work, a new dinuclear copper complex with Br substituent in phenolic group, [Cu2L(ClO4)2], was obtained and its crystal structure was determined by X-ray diffraction. Where, L denotes the above mentioned macrocyclic ligand. (Scheme).

A perspective view of the title complex is shown in Figure 1. The complex consist of two Cu(II) cations, one ligand and two perchlorate anions. The macrocyclic ligand exhibits an approximately planar structure. Each Cu atom has a slightly distorted square-pyramidal coordination with one O atom of a perchlorate anion in the apical position. Although the two Cu atom are in the same environment, there are small differences in the bond lengths and angles relevant to the copper coordination spheres. The base plane is composed of two imine N atoms and two phenolic O atoms with the mean plane deviation of 0.0227Å (for N1N4O1O2) and 0.0375Å (for N2N3O1O2), respectively. The lengths of Cu1—O3 and Cu2—O7 in the axial positions are 2.400 (6)Å and 2.421 (5) Å, respectively, that are somewhat larger than those of the bonds in the base plane, Cu—N or Cu—O (from 1.946 (8)Å to 1.982 (4) Å). Two Cu(II) ions in each center are located in the positions that slightly depart from relevant mean base planes towards the apical O atoms of perchlorate anions. (Distance from Cu1 to the center of the mean plane (I) of N1—N4—O1—O2 is 0.170 Å, Cu2 to the center of the mean plane(II) of N2—N3—O1—O2 is 0.169 Å.) The angles of axial Cu—O bonds with the relative mean planes (I) and (II) are 86.2° and 85.0°, respectively. Two perchlorate anions are located on opposite sides of the whole molecular plane. The presence of two bridging phenolic oxo atoms gives rise to a short metal-metal distance (Cu—Cu 3.109 (2) Å), typical for dinuclear complexes with macrocyclic phenoxo-bridging ligands.

Related literature top

For related literature, see: Chen et al. (2005); Taniguchi (1984); Wang et al. (1997); Zhou et al. (2005); Mohanta et al. (1998); Wada et al. (1995).

Experimental top

2,6-Diformyl-4-bromophenol was prepared according to literature procedures (Taniguchi, 1984). The title complex was synthesized by the following procedure. A solution of 1,3-diaminopropane(0.111 g, 1.5 mmol) in absolute ethanol (15 ml) was added to an ethanol solution (15 ml) of 2,6-Diformyl-4-bromophenol (0.344 g, 1.5 mmol) under stirring. To the suspension of above mixture, copper perchlorate hexahydrate (0.556 g, 1.5 mmol) and 1 ml triethylamine were added and stired for 20 h at ambient temperature. The resulting green precipitate was filtered, washed with ethanol (2 × 30 ml) and dissolved in acetonitrile (15 ml). Single crystals suitable for X-ray diffraction were obtained by a slow diffusion of ethyl acetate into the acetonitrile solution.

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range of 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2–1.5 Ueq(C/O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of the stucture of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsoids; H atoms have been omitted for clarity.
[µ-11,23-Dibromo-3,7,15,19-tetraazatricyclo[19.3.1.19,13]ηexacosa-1(25),2,7,9,11,13 (26),14,19,21,23-decaene-25,26-diolato-\k4N3,N7,O,O';\k4O,O',N15,N19]bis[perchloratocopper(II)] top
Crystal data top
[Cu2(C22H20Br2N4O2)(ClO4)2]F(000) = 1688
Mr = 858.22Dx = 2.086 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3876 reflections
a = 15.7760 (18) Åθ = 2.6–26.0°
b = 8.6253 (10) ŵ = 4.74 mm1
c = 21.501 (3) ÅT = 191 K
β = 110.901 (2)°Block, dark green
V = 2733.2 (6) Å30.20 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5366 independent reflections
Radiation source: sealed tube3505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1619
Tmin = 0.42, Tmax = 0.52k = 1010
15132 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 1.55P]
where P = (Fo2 + 2Fc2)/3
5366 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu2(C22H20Br2N4O2)(ClO4)2]V = 2733.2 (6) Å3
Mr = 858.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7760 (18) ŵ = 4.74 mm1
b = 8.6253 (10) ÅT = 191 K
c = 21.501 (3) Å0.20 × 0.16 × 0.14 mm
β = 110.901 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3505 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.52Rint = 0.053
15132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
5366 reflectionsΔρmin = 0.89 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09268 (5)0.42485 (9)0.55710 (4)0.0518 (2)
Br20.61370 (5)0.46431 (9)0.43389 (4)0.0483 (2)
C10.2343 (5)0.2131 (8)0.6347 (4)0.0444 (18)
H10.23470.27470.67030.053*
C20.1545 (5)0.2072 (7)0.5796 (3)0.0360 (15)
C30.0825 (5)0.2996 (9)0.5909 (4)0.0498 (19)
H30.09400.35030.63130.060*
C40.0015 (5)0.3105 (9)0.5415 (4)0.0436 (17)
C50.0193 (5)0.2402 (8)0.4820 (4)0.0442 (17)
H50.07610.25060.44870.053*
C60.0491 (5)0.1503 (9)0.4703 (3)0.0446 (18)
C70.1345 (5)0.1374 (8)0.5174 (3)0.0429 (17)
C80.0233 (5)0.0779 (7)0.4047 (3)0.0386 (16)
H80.03620.09720.37690.046*
C90.0129 (5)0.0570 (10)0.3100 (4)0.056 (2)
H9A0.02930.02520.28820.067*
H9B0.02290.14630.31290.067*
C100.0641 (5)0.0982 (10)0.2672 (3)0.0509 (19)
H10A0.02260.12580.22310.061*
H10B0.10020.01040.26300.061*
C110.1244 (5)0.2319 (9)0.2975 (4)0.055 (2)
H11A0.08890.30870.31050.066*
H11B0.14330.27840.26350.066*
C120.2833 (4)0.2512 (10)0.3632 (3)0.0429 (17)
H120.28330.29840.32430.052*
C130.3678 (4)0.2573 (8)0.4152 (3)0.0360 (15)
C140.4363 (5)0.3465 (8)0.4044 (3)0.0423 (17)
H140.42380.40360.36540.051*
C150.5216 (5)0.3476 (8)0.4523 (3)0.0405 (17)
C160.5422 (5)0.2665 (8)0.5085 (3)0.0372 (15)
H160.60110.26830.53940.045*
C170.4748 (5)0.1777 (8)0.5214 (3)0.0390 (16)
C180.3842 (5)0.1748 (8)0.4747 (3)0.0374 (16)
C190.5020 (6)0.0874 (9)0.5857 (4)0.052 (2)
H190.56400.07470.60790.063*
C200.5105 (5)0.0086 (9)0.6818 (4)0.053 (2)
H20A0.55560.07240.69880.064*
H20B0.54300.10390.68140.064*
C210.4607 (5)0.0294 (9)0.7317 (4)0.054 (2)
H21A0.50310.06000.77500.064*
H21B0.43160.06660.73650.064*
C220.3907 (6)0.1550 (11)0.7029 (4)0.063 (2)
H22A0.42360.24500.69650.076*
H22B0.36730.18220.73750.076*
Cl10.25784 (12)0.2959 (2)0.66515 (9)0.0465 (4)
Cl20.22902 (11)0.2790 (2)0.33413 (9)0.0433 (4)
Cu10.32546 (6)0.00913 (10)0.56944 (4)0.0405 (2)
Cu20.19480 (5)0.05601 (9)0.42474 (4)0.0350 (2)
N10.3106 (4)0.1370 (8)0.6406 (3)0.0492 (15)
N20.0670 (4)0.0052 (7)0.3793 (3)0.0433 (15)
N30.2095 (4)0.1969 (6)0.3582 (3)0.0355 (12)
N40.4549 (5)0.0307 (8)0.6115 (3)0.0521 (17)
O10.2005 (3)0.0499 (5)0.5072 (2)0.0401 (11)
O20.3201 (3)0.0963 (5)0.4862 (2)0.0375 (10)
O30.2773 (4)0.2128 (6)0.6155 (3)0.0512 (13)
O40.1906 (4)0.2219 (6)0.6771 (3)0.0582 (15)
O50.2216 (4)0.4368 (7)0.6433 (3)0.0577 (14)
O60.3286 (3)0.3008 (6)0.7254 (3)0.0534 (14)
O70.2527 (3)0.1555 (6)0.3774 (3)0.0513 (14)
O80.2945 (3)0.3882 (6)0.3531 (3)0.0532 (14)
O90.1471 (4)0.3245 (6)0.3311 (3)0.0531 (14)
O100.2198 (4)0.2300 (6)0.2715 (3)0.0551 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0498 (5)0.0487 (4)0.0545 (4)0.0148 (4)0.0156 (4)0.0125 (4)
Br20.0449 (4)0.0445 (4)0.0554 (5)0.0174 (3)0.0177 (4)0.0166 (3)
C10.047 (4)0.043 (4)0.042 (4)0.020 (3)0.015 (4)0.010 (3)
C20.050 (4)0.020 (3)0.040 (4)0.002 (3)0.018 (3)0.003 (3)
C30.047 (5)0.051 (5)0.049 (4)0.002 (4)0.014 (4)0.010 (4)
C40.030 (4)0.050 (4)0.046 (4)0.003 (3)0.009 (3)0.013 (3)
C50.034 (4)0.047 (4)0.054 (4)0.007 (3)0.020 (3)0.024 (4)
C60.043 (4)0.048 (4)0.037 (4)0.020 (3)0.008 (3)0.008 (3)
C70.048 (4)0.036 (4)0.034 (4)0.008 (3)0.000 (3)0.005 (3)
C80.048 (4)0.027 (3)0.027 (3)0.005 (3)0.003 (3)0.002 (3)
C90.030 (4)0.057 (5)0.062 (5)0.001 (3)0.005 (4)0.013 (4)
C100.050 (4)0.060 (5)0.029 (4)0.000 (4)0.003 (3)0.013 (3)
C110.042 (4)0.056 (5)0.048 (5)0.004 (4)0.007 (4)0.017 (4)
C120.025 (3)0.079 (5)0.025 (3)0.008 (4)0.009 (3)0.006 (3)
C130.034 (4)0.033 (3)0.040 (4)0.002 (3)0.012 (3)0.011 (3)
C140.046 (4)0.045 (4)0.038 (4)0.006 (3)0.018 (3)0.008 (3)
C150.043 (4)0.042 (4)0.042 (4)0.021 (3)0.023 (3)0.019 (3)
C160.031 (4)0.040 (4)0.029 (3)0.002 (3)0.002 (3)0.012 (3)
C170.043 (4)0.036 (3)0.038 (4)0.004 (3)0.014 (3)0.013 (3)
C180.038 (4)0.029 (3)0.035 (4)0.007 (3)0.000 (3)0.006 (3)
C190.043 (5)0.046 (5)0.051 (5)0.003 (4)0.005 (4)0.002 (4)
C200.042 (4)0.048 (4)0.045 (4)0.000 (3)0.014 (4)0.005 (3)
C210.046 (5)0.057 (5)0.043 (4)0.014 (4)0.002 (4)0.015 (4)
C220.052 (5)0.074 (6)0.044 (5)0.009 (4)0.006 (4)0.014 (4)
Cl10.0314 (9)0.0590 (12)0.0457 (10)0.0003 (8)0.0095 (8)0.0014 (8)
Cl20.0343 (9)0.0461 (10)0.0434 (10)0.0026 (7)0.0066 (8)0.0110 (8)
Cu10.0354 (5)0.0367 (5)0.0385 (5)0.0055 (4)0.0003 (4)0.0015 (3)
Cu20.0271 (4)0.0294 (4)0.0384 (4)0.0070 (3)0.0006 (3)0.0026 (3)
N10.047 (4)0.054 (4)0.039 (3)0.006 (3)0.006 (3)0.005 (3)
N20.026 (3)0.045 (3)0.045 (3)0.003 (2)0.005 (3)0.002 (3)
N30.039 (3)0.039 (3)0.027 (3)0.007 (3)0.010 (3)0.002 (2)
N40.046 (4)0.053 (4)0.040 (4)0.012 (3)0.006 (3)0.007 (3)
O10.040 (3)0.040 (3)0.028 (2)0.000 (2)0.003 (2)0.005 (2)
O20.039 (3)0.040 (3)0.030 (2)0.004 (2)0.009 (2)0.000 (2)
O30.051 (3)0.050 (3)0.053 (3)0.009 (2)0.020 (3)0.004 (2)
O40.055 (3)0.057 (3)0.059 (3)0.020 (3)0.015 (3)0.009 (3)
O50.054 (3)0.060 (3)0.058 (3)0.020 (3)0.018 (3)0.005 (3)
O60.042 (3)0.054 (3)0.050 (3)0.016 (2)0.000 (2)0.013 (2)
O70.031 (3)0.038 (3)0.063 (3)0.013 (2)0.011 (2)0.008 (2)
O80.041 (3)0.060 (3)0.052 (3)0.016 (3)0.009 (3)0.017 (3)
O90.052 (3)0.041 (3)0.055 (3)0.006 (2)0.005 (3)0.015 (2)
O100.058 (4)0.051 (3)0.055 (3)0.017 (3)0.018 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C41.871 (8)C16—C171.416 (10)
Br2—C151.922 (6)C16—H160.9300
C1—N11.337 (10)C17—C181.424 (9)
C1—C21.387 (10)C17—C191.509 (10)
C1—H10.9300C18—O21.312 (8)
C2—C71.396 (9)C19—N41.180 (10)
C2—C31.477 (10)C19—H190.9300
C3—C41.374 (10)C20—N41.490 (9)
C3—H30.9300C20—C211.550 (11)
C4—C51.352 (11)C20—H20A0.9700
C5—C61.421 (10)C20—H20B0.9700
C5—H50.9300C21—C221.513 (12)
C6—C71.370 (10)C21—H21A0.9700
C6—C81.463 (9)C21—H21B0.9700
C7—O11.366 (9)C22—N11.487 (9)
C8—N21.247 (9)C22—H22A0.9700
C8—H80.9300C22—H22B0.9700
C9—C101.468 (11)Cl1—O41.339 (5)
C9—N21.498 (9)Cl1—O51.354 (6)
C9—H9A0.9700Cl1—O61.376 (5)
C9—H9B0.9700Cl1—O31.408 (5)
C10—C111.489 (11)Cl2—O91.330 (6)
C10—H10A0.9700Cl2—O81.349 (5)
C10—H10B0.9700Cl2—O101.368 (6)
C11—N31.532 (8)Cl2—O71.375 (5)
C11—H11A0.9700Cu1—N41.947 (7)
C11—H11B0.9700Cu1—N11.966 (6)
C12—N31.222 (8)Cu1—O11.980 (5)
C12—C131.403 (9)Cu1—O21.983 (4)
C12—H120.9300Cu1—O32.400 (5)
C13—C181.405 (9)Cu2—N21.951 (6)
C13—C141.411 (9)Cu2—N31.953 (5)
C14—C151.373 (10)Cu2—O11.968 (5)
C14—H140.9300Cu2—O21.977 (5)
C15—C161.332 (10)Cu2—O72.421 (5)
N1—C1—C2125.0 (7)C21—C20—H20A107.8
N1—C1—H1117.5N4—C20—H20B107.8
C2—C1—H1117.5C21—C20—H20B107.8
C1—C2—C7131.3 (7)H20A—C20—H20B107.2
C1—C2—C3110.9 (6)C22—C21—C20106.0 (7)
C7—C2—C3117.7 (6)C22—C21—H21A110.5
C4—C3—C2119.7 (7)C20—C21—H21A110.5
C4—C3—H3120.1C22—C21—H21B110.5
C2—C3—H3120.1C20—C21—H21B110.5
C5—C4—C3121.3 (7)H21A—C21—H21B108.7
C5—C4—Br1119.5 (5)N1—C22—C21123.8 (7)
C3—C4—Br1119.2 (6)N1—C22—H22A106.4
C4—C5—C6119.7 (7)C21—C22—H22A106.4
C4—C5—H5120.1N1—C22—H22B106.4
C6—C5—H5120.1C21—C22—H22B106.4
C7—C6—C5121.5 (7)H22A—C22—H22B106.5
C7—C6—C8122.7 (7)O4—Cl1—O5103.3 (4)
C5—C6—C8115.8 (7)O4—Cl1—O6105.5 (4)
O1—C7—C6122.0 (6)O5—Cl1—O6113.6 (4)
O1—C7—C2117.9 (6)O4—Cl1—O3107.7 (3)
C6—C7—C2120.0 (7)O5—Cl1—O3111.9 (3)
N2—C8—C6131.3 (7)O6—Cl1—O3113.9 (3)
N2—C8—H8114.3O9—Cl2—O8115.7 (4)
C6—C8—H8114.3O9—Cl2—O10106.4 (3)
C10—C9—N2116.7 (6)O8—Cl2—O10108.3 (3)
C10—C9—H9A108.1O9—Cl2—O7106.7 (4)
N2—C9—H9A108.1O8—Cl2—O7110.0 (3)
C10—C9—H9B108.1O10—Cl2—O7109.5 (4)
N2—C9—H9B108.1N4—Cu1—N197.7 (3)
H9A—C9—H9B107.3N4—Cu1—O1166.5 (3)
C9—C10—C11108.8 (7)N1—Cu1—O193.4 (2)
C9—C10—H10A109.9N4—Cu1—O292.2 (3)
C11—C10—H10A109.9N1—Cu1—O2168.8 (2)
C9—C10—H10B109.9O1—Cu1—O276.07 (19)
C11—C10—H10B109.9N4—Cu1—O395.8 (2)
H10A—C10—H10B108.3N1—Cu1—O389.0 (2)
C10—C11—N3116.7 (6)O1—Cu1—O392.03 (19)
C10—C11—H11A108.1O2—Cu1—O395.11 (18)
N3—C11—H11A108.1N2—Cu2—N398.3 (3)
C10—C11—H11B108.1N2—Cu2—O193.1 (2)
N3—C11—H11B108.1N3—Cu2—O1165.9 (2)
H11A—C11—H11B107.3N2—Cu2—O2169.2 (2)
N3—C12—C13133.6 (7)N3—Cu2—O291.6 (2)
N3—C12—H12113.2O1—Cu2—O276.50 (19)
C13—C12—H12113.2N2—Cu2—O795.6 (2)
C12—C13—C18121.3 (6)N3—Cu2—O790.0 (2)
C12—C13—C14117.1 (6)O1—Cu2—O797.26 (19)
C18—C13—C14121.6 (6)O2—Cu2—O788.63 (17)
C15—C14—C13118.9 (6)C1—N1—C22118.8 (6)
C15—C14—H14120.6C1—N1—Cu1123.7 (5)
C13—C14—H14120.6C22—N1—Cu1117.4 (5)
C16—C15—C14122.3 (6)C8—N2—C9113.5 (6)
C16—C15—Br2120.3 (5)C8—N2—Cu2123.0 (5)
C14—C15—Br2117.4 (5)C9—N2—Cu2123.5 (5)
C15—C16—C17120.3 (6)C12—N3—C11121.2 (6)
C15—C16—H16119.8C12—N3—Cu2122.1 (5)
C17—C16—H16119.8C11—N3—Cu2116.7 (5)
C16—C17—C18120.4 (6)C19—N4—C20109.2 (7)
C16—C17—C19118.1 (6)C19—N4—Cu1125.9 (6)
C18—C17—C19121.5 (7)C20—N4—Cu1124.9 (6)
O2—C18—C13122.0 (6)C7—O1—Cu2127.6 (4)
O2—C18—C17121.6 (6)C7—O1—Cu1128.4 (4)
C13—C18—C17116.5 (7)Cu2—O1—Cu1103.9 (2)
N4—C19—C17128.6 (7)C18—O2—Cu2128.3 (4)
N4—C19—H19115.7C18—O2—Cu1128.2 (4)
C17—C19—H19115.7Cu2—O2—Cu1103.5 (2)
N4—C20—C21117.9 (6)Cl1—O3—Cu1155.0 (3)
N4—C20—H20A107.8Cl2—O7—Cu2144.6 (3)

Experimental details

Crystal data
Chemical formula[Cu2(C22H20Br2N4O2)(ClO4)2]
Mr858.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)191
a, b, c (Å)15.7760 (18), 8.6253 (10), 21.501 (3)
β (°) 110.901 (2)
V3)2733.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.74
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.42, 0.52
No. of measured, independent and
observed [I > 2σ(I)] reflections
15132, 5366, 3505
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.138, 1.03
No. of reflections5366
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.89

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

 

Acknowledgements

The authors thank the Fund of Innovative Experiments for Students, Hubei Open Center for the Experimental Teaching of Fundamental Chemistry, Wuhan Institute of Technology, for support.

References

First citationBruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467–m1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669–2677.  Web of Science CrossRef CAS Google Scholar
First citationTaniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2689.  CrossRef CAS Web of Science Google Scholar
First citationWada, H., Motada, K.-I., Ohba, M., Sakiyama, H., Matsumoto, N. & Ōkawa, H. (1995). Bull. Chem. Soc. Jpn, 68, 1105–1114.  CrossRef CAS Web of Science Google Scholar
First citationWang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem. 36, 629–636.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Y. Q. (2005). J. Coord. Chem. 58, 443–451.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds