organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,3-di­hydro­thieno[3,4-b]-1,4-dioxine-5,7-di­carboxyl­ate

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 22 December 2007; accepted 10 January 2008; online 18 January 2008)

The title compound, C12H14O6S, is a dicarboxylic acid diethyl ester of 3,4-ethyl­enedioxy­thio­phene, which is a component of electrically conductive poly(3,4-ethyl­enedioxy­thio­phene) (PEDOT). The ethyl­ene group is disordered over two sites with occupancy factors 0.64 and 0.36. Both the carbonyl groups are coplanar with the thio­phene ring. The mol­ecules form centrosymmetric dimers with an R22(12) coupling by inter­molecular C—H⋯O hydrogen bonds [3.333 (5) Å] at the ethoxy­carbonyl groups. The dimer units are arranged to form a ribbon-like mol­ecular sheet.

Related literature

The title compound was synthesized as a precursor of 3,4-ethyl­enedioxy­thio­phene, which is polymerized to afford PEDOT (Groenendaal et al., 2000[Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481-494.]; Pei et al., 1994[Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. (1994). Polymer, 35, 1347-1351.]). Synthetic methods for the title compound have been reported by: Coffey et al. (1996[Coffey, M., McKellar, B. R., Reinhardt, B. A., Nijakowski, T. & Feld, W. A. (1996). Synth. Commun. 26, 2205-2212.]); Kumar et al. (1998[Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. & Reynolds, J. R. (1998). Chem. Mater. 10, 896-902.]); Zong et al. (2002[Zong, K., Madrigal, L., Groenendaal, L. & Reynolds, J. R. (2002). Chem. Commun. pp. 2498-2499.]); Caras-Quintero & Bäuerle (2002[Caras-Quintero, D. & Bäuerle, P. (2002). Chem. Commun. pp. 2690-2691.]). For literature on related mol­ecular structures, including a 3,4-ethyl­enedioxy­thio­phene ring system, see: Sotzing et al. (1996[Sotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater. 8, 882-889.]); Abboud et al. (1998[Abboud, K. A., Irvin, D. J. & Reynolds, J. R. (1998). Acta Cryst. C54, 1994-1997.]); Kumar et al. (1998[Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. & Reynolds, J. R. (1998). Chem. Mater. 10, 896-902.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O6S

  • Mr = 286.30

  • Triclinic, [P \overline 1]

  • a = 4.6805 (8) Å

  • b = 8.3673 (17) Å

  • c = 17.351 (3) Å

  • α = 94.294 (7)°

  • β = 92.024 (9)°

  • γ = 105.641 (9)°

  • V = 651.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 (1) K

  • 0.60 × 0.10 × 0.08 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 5181 measured reflections

  • 2899 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.176

  • S = 1.11

  • 2899 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O3i 0.96 2.66 3.333 (5) 127
C9—H9A⋯O3ii 0.96 2.62 3.523 (7) 157
C6B—H6B1⋯O5iii 0.97 2.68 3.233 (12) 117
Symmetry codes: (i) -x+3, -y, -z; (ii) -x+2, -y, -z; (iii) x+1, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) has been prepared as a precursor of 3,4-ethylenedioxythiophene (Coffey et al., 1996; Kumar et al., 1998; Zong et al., 2002; Caras-Quintero & Bäuerle, 2002), which is polymerized by oxidizing agents to afford poly(3,4-ethylenedioxythiophene) (PEDOT). PEDOT shows high electrical conductivities and high stabilities in the oxidized states. Furthermore, the thin films of oxidized PEDOT are almost transparent. Therefore, these are used for organic electrodes in the study of electronic devices (Groenendaal et al., 2000; Pei et al., 1994). With regard to the hole-transporting abilities, the arrangement of 3,4-ethylenedioxythiophene units in film has attracted considerable attention. A few crystal structures including a 3,4-ethylenedioxythiophene ring system were reported (Sotzing et al., 1996; Abboud et al., 1998; Kumar et al., 1998). In this paper, we report the crystal structure of compound (I) that is a dicarboxylic acid diethyl ester of 3,4-ethylenedioxythiophene.

The compound (I) crystallizes in the P1 space group. The molecular structure is shown in Fig. 1. The ethylene moiety is disordered over two sites (O1—C5A—C6A—O2 and O1—C5B—C6B—O2) with occupancies of 0.36:0.64. The bond lengths and angles are all within expected ranges (Allen et al., 1987). Both the carbonyl moieties are planar to the thiophene ring. The molecules form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(12) by intermolecular C–H···O hydrogen bonds at the ethoxycarbonyl groups [C9–H9B···O3(–x + 3, –y, –z): 3.333 (5) Å]. The dimer units are arranged to form a ribbon-like molecular sheet along the b axis, as shown in Fig. 2. The ribbon-like molecular sheets stack to form a layer structure (Fig. 3).

Related literature top

The title compound was synthesized as a precursor of 3,4-ethylenedioxythiophene, which is polymerized to afford PEDOT (Groenendaal et al., 2000; Pei et al., 1994). Synthetic methods for the title compound have been reported by: Coffey et al. (1996); Kumar et al. (1998); Zong et al. (2002); Caras-Quintero & Bäuerle (2002). For literature on related molecular structures, including a 3,4-ethylenedioxythiophene ring system, see: Sotzing et al. (1996); Abboud et al. (1998); Kumar et al. (1998). For related literature, see: Bernstein et al. (1995); Allen et al. (1987); Pei et al. (1994).

Experimental top

The title compound (I) was prepared as follows: A solution of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate (3.12 g, 12 mmol) and caesium fluoride (7.26 g, 48 mmol) in dry acetonitrile (200 ml) was stirred for 1 h under nitrogen. After addition of a solution of ethylene di(p-toluenesulfonate) (5.55 g, 15 mmol) in dry acetonitrile (100 ml), the reaction mixture was refluxed for 48 h. The reaction mixture was filtered and the precipitate was washed with acetonitrile. The filtrate was concentrated and the residue was chromatographed on alumina gel (CH2Cl2) and silica gel (CH2Cl2) to afford the compound of (I) (2.38 g, 69%) as colorless needles. Physical data for (I): m.p. 424–425 K; IR (KBr, cm-1) 2998, 1698, 1454, 1377, 1302, 1098; 1H NMR (CDCl3, δ p.p.m): 1.37 (t, J = 7.1 Hz, 6H), 4.35 (q, J = 7.1 Hz, 4H), 4.40 (s, 4H); 13C NMR (CDCl3, δ p.p.m): 14.2, 61.3, 64.7, 111.8, 144.9, 160.7; MS (EI): m/z 286 (M+), 241, 213, 169. Anal. Calcd for C12H14O6S: C, 50.34; H, 4.93. Found: C, 50.50; H, 4.96. Colorless crystals of (I) suitable for X-ray analysis were obtained from a methanol solution.

Refinement top

All the H atoms were placed in geometrically calculated positions, with C—H = 0.97 (methylene) and 0.96 (methyl) Å and Uiso(H) = 1.2Ueq(C) (methylene) and 1.5Ueq(C) (methyl), and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. The disordered atoms (C5B and C6B) are omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), ribbon-like molecular sheet.
[Figure 3] Fig. 3. The packing diagram of (I), packing mode of molecular sheets.
Diethyl 2,3-dihydrothieno[3,4-b]-1,4-dioxine-5,7-dicarboxylate top
Crystal data top
C12H14O6SZ = 2
Mr = 286.30F(000) = 300
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 4.6805 (8) ÅCell parameters from 1654 reflections
b = 8.3673 (17) Åθ = 3.3–27.5°
c = 17.351 (3) ŵ = 0.27 mm1
α = 94.294 (7)°T = 295 K
β = 92.024 (9)°Plate, colorless
γ = 105.641 (9)°0.60 × 0.10 × 0.08 mm
V = 651.4 (2) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2300 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.036
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 14.6199 pixels mm-1h = 46
ϕ and ω scansk = 1010
5181 measured reflectionsl = 2219
2899 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.337P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H14O6Sγ = 105.641 (9)°
Mr = 286.30V = 651.4 (2) Å3
Triclinic, P1Z = 2
a = 4.6805 (8) ÅMo Kα radiation
b = 8.3673 (17) ŵ = 0.27 mm1
c = 17.351 (3) ÅT = 295 K
α = 94.294 (7)°0.60 × 0.10 × 0.08 mm
β = 92.024 (9)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2300 reflections with I > 2σ(I)
5181 measured reflectionsRint = 0.036
2899 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.11Δρmax = 0.55 e Å3
2899 reflectionsΔρmin = 0.26 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The methylene carbon atoms and the associated hydrogen atoms of the dioxine ring are disordered over two sites (O1—C5A—C6A—O2 and O1—C5B—C6B—O2) with occupancies of 0.36 (2):0.64 (2). The values were determined by refining site occupancies.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.86744 (17)0.05411 (9)0.23931 (5)0.0487 (3)
O11.1659 (5)0.5120 (3)0.18957 (13)0.0547 (6)
O20.7713 (5)0.4829 (2)0.31477 (12)0.0501 (5)
O31.2360 (6)0.0234 (3)0.11029 (18)0.0783 (8)
O41.4165 (6)0.2967 (3)0.09719 (14)0.0649 (7)
O50.4735 (5)0.0297 (3)0.36729 (15)0.0632 (6)
O60.4318 (4)0.2289 (3)0.39704 (12)0.0491 (5)
C11.0739 (6)0.2137 (4)0.19066 (17)0.0430 (6)
C21.0364 (6)0.3648 (3)0.21764 (16)0.0400 (6)
C30.8393 (6)0.3508 (3)0.27903 (15)0.0377 (6)
C40.7311 (6)0.1889 (3)0.29702 (16)0.0399 (6)
C5A1.162 (5)0.6525 (14)0.2449 (14)0.062 (5)0.36 (2)
H5A11.22570.75620.22070.074*0.36 (2)
H5A21.29660.65760.28930.074*0.36 (2)
C6A0.855 (5)0.629 (2)0.2697 (13)0.059 (4)0.36 (2)
H6A10.84170.72710.30110.070*0.36 (2)
H6A20.71830.61250.22460.070*0.36 (2)
C5B1.018 (4)0.6382 (11)0.2131 (7)0.065 (3)0.64 (2)
H5B10.82760.61530.18430.078*0.64 (2)
H5B21.13790.74690.20170.078*0.64 (2)
C6B0.971 (4)0.6381 (10)0.2987 (7)0.063 (3)0.64 (2)
H6B11.16030.65430.32720.076*0.64 (2)
H6B20.88980.72920.31530.076*0.64 (2)
C71.2491 (7)0.1675 (4)0.12851 (19)0.0517 (7)
C81.5944 (10)0.2624 (6)0.0335 (2)0.0806 (12)
H8A1.78360.34700.03670.097*
H8B1.63350.15520.03780.097*
C91.4402 (13)0.2613 (7)0.0398 (3)0.1016 (16)
H9A1.25750.17390.04390.152*
H9B1.56230.24260.08090.152*
H9C1.39780.36660.04350.152*
C100.5316 (6)0.1166 (3)0.35600 (17)0.0444 (6)
C110.2365 (7)0.1649 (4)0.45733 (19)0.0571 (8)
H11A0.34050.11780.49510.069*
H11B0.06490.07830.43520.069*
C120.1406 (9)0.3054 (5)0.4950 (2)0.0747 (11)
H12A0.30810.38330.52270.112*
H12B0.00940.26370.53030.112*
H12C0.06120.36020.45620.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0565 (5)0.0320 (4)0.0588 (5)0.0137 (3)0.0039 (3)0.0041 (3)
O10.0743 (14)0.0356 (11)0.0540 (13)0.0104 (10)0.0276 (10)0.0088 (9)
O20.0703 (13)0.0307 (10)0.0490 (12)0.0103 (9)0.0232 (10)0.0043 (8)
O30.0888 (18)0.0575 (15)0.095 (2)0.0335 (14)0.0233 (15)0.0121 (14)
O40.0793 (16)0.0678 (16)0.0562 (14)0.0309 (13)0.0280 (12)0.0075 (12)
O50.0707 (14)0.0373 (12)0.0790 (17)0.0050 (10)0.0115 (12)0.0213 (11)
O60.0515 (11)0.0418 (11)0.0513 (12)0.0041 (9)0.0154 (9)0.0127 (9)
C10.0454 (15)0.0401 (15)0.0445 (16)0.0144 (12)0.0023 (12)0.0004 (12)
C20.0462 (14)0.0328 (13)0.0396 (14)0.0079 (11)0.0048 (11)0.0039 (11)
C30.0421 (13)0.0317 (13)0.0379 (14)0.0079 (10)0.0030 (10)0.0028 (11)
C40.0429 (14)0.0313 (13)0.0444 (15)0.0080 (11)0.0017 (11)0.0049 (11)
C5A0.089 (10)0.021 (4)0.066 (9)0.000 (5)0.024 (7)0.007 (5)
C6A0.089 (11)0.029 (5)0.059 (10)0.016 (6)0.017 (7)0.004 (6)
C5B0.109 (8)0.036 (3)0.056 (5)0.023 (4)0.038 (5)0.013 (3)
C6B0.100 (7)0.026 (3)0.055 (5)0.002 (4)0.036 (4)0.004 (3)
C70.0530 (17)0.0508 (18)0.0554 (18)0.0238 (14)0.0030 (14)0.0049 (15)
C80.082 (3)0.106 (3)0.068 (3)0.047 (2)0.028 (2)0.005 (2)
C90.154 (5)0.099 (4)0.071 (3)0.066 (3)0.027 (3)0.006 (3)
C100.0441 (14)0.0361 (14)0.0488 (16)0.0014 (11)0.0009 (12)0.0122 (12)
C110.0505 (17)0.064 (2)0.0530 (19)0.0031 (15)0.0139 (14)0.0208 (16)
C120.073 (2)0.079 (3)0.062 (2)0.003 (2)0.0216 (18)0.000 (2)
Geometric parameters (Å, º) top
S1—C41.716 (3)C5A—H5A20.9700
S1—C11.720 (3)C6A—H6A10.9700
O1—C21.352 (3)C6A—H6A20.9700
O1—C5B1.453 (8)C5B—C6B1.508 (18)
O1—C5A1.466 (13)C5B—H5B10.9700
O2—C31.345 (3)C5B—H5B20.9700
O2—C6B1.435 (9)C6B—H6B10.9700
O2—C6A1.468 (16)C6B—H6B20.9700
O3—C71.207 (4)C8—C91.439 (6)
O4—C71.319 (4)C8—H8A0.9700
O4—C81.463 (4)C8—H8B0.9700
O5—C101.213 (3)C9—H9A0.9600
O6—C101.329 (4)C9—H9B0.9600
O6—C111.451 (3)C9—H9C0.9600
C1—C21.373 (4)C11—C121.483 (5)
C1—C71.468 (4)C11—H11A0.9700
C2—C31.425 (4)C11—H11B0.9700
C3—C41.376 (4)C12—H12A0.9600
C4—C101.463 (4)C12—H12B0.9600
C5A—C6A1.48 (3)C12—H12C0.9600
C5A—H5A10.9700
C4—S1—C191.98 (13)H5B1—C5B—H5B2108.2
C2—O1—C5B111.5 (4)O2—C6B—C5B110.0 (11)
C2—O1—C5A111.2 (6)O2—C6B—H6B1109.7
C5B—O1—C5A33.1 (6)C5B—C6B—H6B1109.7
C3—O2—C6B112.4 (4)O2—C6B—H6B2109.7
C3—O2—C6A111.3 (7)C5B—C6B—H6B2109.7
C6B—O2—C6A28.4 (6)H6B1—C6B—H6B2108.2
C7—O4—C8117.3 (3)O3—C7—O4125.4 (3)
C10—O6—C11115.5 (2)O3—C7—C1121.2 (3)
C2—C1—C7131.7 (3)O4—C7—C1113.4 (3)
C2—C1—S1111.6 (2)C9—C8—O4110.4 (3)
C7—C1—S1116.7 (2)C9—C8—H8A109.6
O1—C2—C1125.0 (3)O4—C8—H8A109.6
O1—C2—C3122.6 (2)C9—C8—H8B109.6
C1—C2—C3112.4 (2)O4—C8—H8B109.6
O2—C3—C4124.8 (2)H8A—C8—H8B108.1
O2—C3—C2122.8 (2)C8—C9—H9A109.5
C4—C3—C2112.4 (2)C8—C9—H9B109.5
C3—C4—C10131.5 (3)H9A—C9—H9B109.5
C3—C4—S1111.6 (2)C8—C9—H9C109.5
C10—C4—S1116.8 (2)H9A—C9—H9C109.5
O1—C5A—C6A108.4 (18)H9B—C9—H9C109.5
O1—C5A—H5A1110.0O5—C10—O6124.2 (3)
C6A—C5A—H5A1110.0O5—C10—C4122.8 (3)
O1—C5A—H5A2110.0O6—C10—C4112.9 (2)
C6A—C5A—H5A2110.0O6—C11—C12107.9 (3)
H5A1—C5A—H5A2108.4O6—C11—H11A110.1
O2—C6A—C5A110.1 (18)C12—C11—H11A110.1
O2—C6A—H6A1109.6O6—C11—H11B110.1
C5A—C6A—H6A1109.6C12—C11—H11B110.1
O2—C6A—H6A2109.6H11A—C11—H11B108.4
C5A—C6A—H6A2109.6C11—C12—H12A109.5
H6A1—C6A—H6A2108.2C11—C12—H12B109.5
O1—C5B—C6B109.7 (11)H12A—C12—H12B109.5
O1—C5B—H5B1109.7C11—C12—H12C109.5
C6B—C5B—H5B1109.7H12A—C12—H12C109.5
O1—C5B—H5B2109.7H12B—C12—H12C109.5
C6B—C5B—H5B2109.7
C4—S1—C1—C20.5 (2)C2—O1—C5A—C6A50 (3)
C4—S1—C1—C7179.3 (2)C5B—O1—C5A—C6A46.7 (17)
C5B—O1—C2—C1162.8 (8)C3—O2—C6A—C5A48 (2)
C5A—O1—C2—C1161.5 (13)C6B—O2—C6A—C5A50 (2)
C5B—O1—C2—C316.3 (9)O1—C5A—C6A—O267 (3)
C5A—O1—C2—C319.4 (13)C2—O1—C5B—C6B47.5 (16)
C7—C1—C2—O10.2 (5)C5A—O1—C5B—C6B48.7 (13)
S1—C1—C2—O1178.7 (2)C3—O2—C6B—C5B46.3 (17)
C7—C1—C2—C3179.0 (3)C6A—O2—C6B—C5B47.3 (18)
S1—C1—C2—C30.5 (3)O1—C5B—C6B—O265 (2)
C6B—O2—C3—C4164.7 (8)C8—O4—C7—O31.9 (5)
C6A—O2—C3—C4164.7 (11)C8—O4—C7—C1178.7 (3)
C6B—O2—C3—C214.9 (9)C2—C1—C7—O3174.9 (3)
C6A—O2—C3—C215.7 (11)S1—C1—C7—O33.5 (4)
O1—C2—C3—O21.3 (4)C2—C1—C7—O45.7 (5)
C1—C2—C3—O2179.5 (2)S1—C1—C7—O4175.8 (2)
O1—C2—C3—C4179.0 (3)C7—O4—C8—C995.4 (4)
C1—C2—C3—C40.2 (4)C11—O6—C10—O51.4 (4)
O2—C3—C4—C101.2 (5)C11—O6—C10—C4179.1 (2)
C2—C3—C4—C10178.4 (3)C3—C4—C10—O5175.0 (3)
O2—C3—C4—S1179.9 (2)S1—C4—C10—O53.6 (4)
C2—C3—C4—S10.2 (3)C3—C4—C10—O62.7 (5)
C1—S1—C4—C30.4 (2)S1—C4—C10—O6178.76 (18)
C1—S1—C4—C10178.4 (2)C10—O6—C11—C12178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O3i0.962.663.333 (5)127
C9—H9A···O3ii0.962.623.523 (7)157
C6B—H6B1···O5iii0.972.683.233 (12)117
Symmetry codes: (i) x+3, y, z; (ii) x+2, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14O6S
Mr286.30
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.6805 (8), 8.3673 (17), 17.351 (3)
α, β, γ (°)94.294 (7), 92.024 (9), 105.641 (9)
V3)651.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.60 × 0.10 × 0.08
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5181, 2899, 2300
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.176, 1.11
No. of reflections2899
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O3i0.962.663.333 (5)127.1
C9—H9A···O3ii0.962.623.523 (7)157.1
C6B—H6B1···O5iii0.972.683.233 (12)116.5
Symmetry codes: (i) x+3, y, z; (ii) x+2, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationAbboud, K. A., Irvin, D. J. & Reynolds, J. R. (1998). Acta Cryst. C54, 1994–1997.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCaras-Quintero, D. & Bäuerle, P. (2002). Chem. Commun. pp. 2690–2691.  Web of Science CrossRef Google Scholar
First citationCoffey, M., McKellar, B. R., Reinhardt, B. A., Nijakowski, T. & Feld, W. A. (1996). Synth. Commun. 26, 2205–2212.  CrossRef CAS Web of Science Google Scholar
First citationGroenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481–494.  CrossRef CAS Google Scholar
First citationKumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. & Reynolds, J. R. (1998). Chem. Mater. 10, 896–902.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. (1994). Polymer, 35, 1347–1351.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater. 8, 882–889.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZong, K., Madrigal, L., Groenendaal, L. & Reynolds, J. R. (2002). Chem. Commun. pp. 2498–2499.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds