organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,4′R,5′R)-(E)-tert-Butyl 2-acetyl-2-(2-oxo-5-phenyl-1,3-dioxolan-4-ylmeth­yl)-5-phenyl­pent-4-enoate

aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: D.J.Fox@warwick.ac.uk

(Received 22 January 2008; accepted 24 January 2008; online 30 January 2008)

The title compound, C27H30O6, was prepared by monodihydroxy­lation of the bis-olefin (E,E)-tert-butyl 2-acetyl-2-cinnamyl-5-phenyl­pent-4-enoate using standard Sharpless asymmetric dihydroxy­lation conditions, followed by treatment with 1,1′-carbonyl diimidazole. In the crystal structure, the phenyl rings form an intra­molecular edge-to-face C—H⋯π contact with an inter­planar angle of 56.4° and a H⋯centroid distance of 3.03 Å.

Related literature

For related literature, see: Fox et al. (2006[Fox, D. J., Parris, S., Pedersen, D. S., Tyzack, C. R. & Warren, S. (2006). Org. Biomol. Chem. 4, 3108-3112.]); Kolb et al. (1994[Kolb, H., VanNiewenhze, M. S. & Sharpless, K. B. (1994). Chem. Rev. 94, 2483-2547.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30O6

  • Mr = 450.51

  • Orthorhombic, P 21 21 21

  • a = 6.4707 (2) Å

  • b = 7.7258 (4) Å

  • c = 49.803 (3) Å

  • V = 2489.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 (2) K

  • 0.37 × 0.25 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.817, Tmax = 0.996

  • 4524 measured reflections

  • 1806 independent reflections

  • 1188 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.256

  • S = 1.10

  • 1806 reflections

  • 274 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19ACg 0.95 3.03 3.757 135

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we published a method for the synthesis of dihydrofurans containing a diphenylphosphinoyl group by intramolecular ring opening of cyclic carbonates (Fox et al., 2006). We are currently seeking to extend this methodology with other anion-stabilizing groups. In particular, we are interested in replacing the diphenylphosphinoyl group with a carboxylic ester. When we exposed (E,E)-tert-butyl 2-acetyl-2-cinnamyl-5-phenylpent-4-enoate to the standard Sharpless asymmetric dihydroxylation conditions (Kolb et al., 1994), followed by treatment with 1,1'-carbonyl diimidazole we obtained a significant amount (20%) of the title compound where only one olefin had been dihydroxylated.

Related literature top

For related literature, see: Fox et al. (2006); Kolb et al. (1994).

Experimental top

The synthetic procedure is summarized in Fig. 2. By a method analogous to that reported by Sharpless and co-workers (Kolb et al., 1994), tert-butyl ester 1 (3.0 g, 10.9 mmol; 5:1 mixture of 1 and 2) was dissolved in t-BuOH (100 ml) to give a clear solution. Water (100 ml) was added and the mixture was cooled to 278 K. A freshly made mixture of K2OsO4.2H2O (1 mol %), K3Fe(CN)6 (3 equiv.), K2CO3 (3 equiv.), MeSO2NH2 (1 equiv.) and hydroquinidine 1,4-phthalazinediyl diether (denoted (DHQD)2PHAL, 2 mol %) was added to the cooled solution in one portion and it was stirred vigorously for 24 h. Sodium sulfite (ca 10 equiv.) was added and the reaction allowed to warm to room temperature with vigorous stirring. The slurry was transferred to a separatory funnel with water (200 ml) and extracted with ethyl acetate (3 × 100 ml). The combined organic extracts were washed with aqueous sulfate buffer (100 ml), saturated aqueous NaHCO3 (100 ml), dried (Na2SO4), filtered and evaporated under reduced pressure. The residue was dissolved in dichloromethane (100 ml) and 1,1'-carbonyldiimidazole (1.5 equiv.) was added to the stirred solution at room temperature. The reaction mixture was stirred until completion to give a complex mixture of products. Water (100 ml) was added and the mixture transferred to a separatory funnel with brine (100 ml) and extracted with dichloromethane (3 × 100 ml). The combined organic phases were dried (Na2SO4), filtered and the solvent removed in vacuo to give the crude product that was purified through a combination of crystallizations and column chromatography to give 4 (338 mg, 14%) as a clear gum (1:1 mixture of diastereoisomers) and the title compound (denoted 6 in Fig. 2, 112 mg, 14%) as colourless plates (a single diastereoisomer). m.p. (EtOAc, pentane) = 449–450 K.

Refinement top

H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 or 1.5Ueq(C). A combination of relatively thin plates and large unit-cell volume gave rise to relatively weak diffraction. The resulting structure is therefore of low precision. Although the molecular geometry was reasonable when unconstrained, the phenyl rings were constrained to be regular hexagons in an effort to improve the data-to-parameter ratio. One restraint was necessary: the C16=C17 bond was restrained to 1.35 (1) Å. In the absence of significant anomalous scattering effects, 770 Friedel pairs were merged as equivalent data. The absolute structure is based on the known stereochemical outcome of the asymmetric dihydroxylation.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement parameters drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Summary of the synthetic procedure. CDI = 1,1'-carbonyldiimidazole, (DHQD)2PHAL = Hydroquinidine 1,4-phthalazinediyl diether
(2S,4'R,5'R)-(E)-tert-Butyl 2-acetyl-2-(2-oxo-5-phenyl-1,3-dioxolan-4-ylmethyl)-5-phenylpent-4-enoate top
Crystal data top
C27H30O6F(000) = 960
Mr = 450.51Dx = 1.202 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 21008 reflections
a = 6.4707 (2) Åθ = 1.0–25.0°
b = 7.7258 (4) ŵ = 0.08 mm1
c = 49.803 (3) ÅT = 200 K
V = 2489.7 (2) Å3Plate, colourless
Z = 40.37 × 0.25 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1806 independent reflections
Radiation source: fine-focus sealed tube1188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω and ϕ scansθmax = 24.9°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 77
Tmin = 0.817, Tmax = 0.996k = 99
4524 measured reflectionsl = 5858
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.256 w = 1/[σ2(Fo2) + (0.175P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1806 reflectionsΔρmax = 0.64 e Å3
274 parametersΔρmin = 0.68 e Å3
1 restraintAbsolute structure: In the absence of significant anomalous scattering effects, 770 Friedel pairs have been merged as equivalent data.
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H30O6V = 2489.7 (2) Å3
Mr = 450.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4707 (2) ŵ = 0.08 mm1
b = 7.7258 (4) ÅT = 200 K
c = 49.803 (3) Å0.37 × 0.25 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1806 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1188 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.996Rint = 0.070
4524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0801 restraint
wR(F2) = 0.256H-atom parameters constrained
S = 1.10Δρmax = 0.64 e Å3
1806 reflectionsΔρmin = 0.68 e Å3
274 parametersAbsolute structure: In the absence of significant anomalous scattering effects, 770 Friedel pairs have been merged as equivalent data.
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5651 (9)0.7809 (10)0.79920 (11)0.078 (2)
O20.7465 (8)0.5341 (8)0.80759 (10)0.0608 (15)
O30.4141 (8)0.4621 (9)0.84707 (10)0.0691 (17)
O40.3075 (9)0.3331 (8)0.88419 (13)0.0799 (19)
O50.1713 (12)0.2537 (12)0.84465 (15)0.118 (3)
O61.1049 (8)0.7479 (10)0.85656 (13)0.086 (2)
C10.6727 (11)0.6903 (13)0.81319 (16)0.057 (2)
C20.7525 (10)0.7483 (12)0.84096 (14)0.053 (2)
C30.7220 (10)0.6075 (11)0.86277 (15)0.050 (2)
H3A0.79550.50140.85700.060*
H3B0.78760.64800.87960.060*
C40.5051 (11)0.5618 (12)0.86863 (14)0.053 (2)
H4A0.42340.67040.87120.063*
C50.4734 (13)0.4430 (12)0.89308 (14)0.062 (2)
H5A0.60050.37170.89600.074*
C60.2887 (15)0.3408 (16)0.8573 (2)0.082 (3)
C70.4154 (9)0.5309 (9)0.91885 (9)0.058 (2)
C80.2322 (8)0.6241 (9)0.92076 (11)0.072 (3)
H8A0.14500.63550.90550.086*
C90.1766 (10)0.7005 (9)0.94498 (15)0.090 (3)
H9A0.05150.76420.94630.108*
C100.3042 (13)0.6837 (9)0.96728 (11)0.101 (4)
H10A0.26620.73600.98380.121*
C110.4874 (12)0.5905 (10)0.96537 (9)0.096 (3)
H11A0.57460.57910.98060.116*
C120.5429 (9)0.5141 (9)0.94116 (12)0.075 (3)
H12A0.66810.45040.93990.090*
C130.9897 (13)0.7829 (13)0.83825 (17)0.064 (2)
C141.0678 (12)0.8710 (13)0.81315 (16)0.073 (3)
H14A1.21770.88680.81440.110*
H14B1.00070.98400.81130.110*
H14C1.03560.79920.79750.110*
C150.6514 (11)0.9228 (11)0.84840 (15)0.055 (2)
H15A0.67081.00550.83340.066*
H15B0.50110.90550.85090.066*
C160.7411 (16)0.9975 (13)0.8733 (2)0.094 (4)
H16A0.87741.04260.87220.112*
C170.6501 (16)1.0065 (14)0.8962 (2)0.093 (3)
H17A0.50940.97190.89710.111*
C180.7538 (12)1.0696 (10)0.92249 (10)0.083 (3)
C190.6353 (9)1.0352 (9)0.94515 (13)0.078 (3)
H19A0.50480.98010.94340.094*
C200.7078 (11)1.0815 (10)0.97042 (10)0.092 (3)
H20A0.62681.05800.98590.110*
C210.8987 (12)1.1622 (10)0.97304 (13)0.091 (3)
H21A0.94831.19380.99030.109*
C221.0172 (9)1.1966 (9)0.95038 (19)0.099 (3)
H22A1.14781.25170.95220.119*
C230.9448 (11)1.1503 (10)0.92511 (15)0.090 (3)
H23A1.02581.17380.90960.109*
C240.6977 (13)0.4463 (15)0.78174 (16)0.073 (3)
C250.4660 (18)0.445 (2)0.7773 (2)0.118 (5)
H25A0.41690.56320.77450.176*
H25B0.39770.39520.79320.176*
H25C0.43350.37420.76150.176*
C260.796 (2)0.2715 (13)0.7865 (2)0.110 (4)
H26A0.72120.21040.80070.165*
H26B0.94070.28740.79190.165*
H26C0.79110.20340.76990.165*
C270.8136 (17)0.5420 (17)0.75951 (19)0.106 (4)
H27A0.74830.65470.75640.160*
H27B0.80900.47360.74300.160*
H27C0.95770.55930.76490.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (3)0.111 (6)0.060 (3)0.030 (4)0.011 (3)0.001 (4)
O20.056 (3)0.074 (4)0.052 (3)0.014 (3)0.000 (3)0.002 (3)
O30.053 (3)0.096 (5)0.059 (3)0.013 (4)0.001 (3)0.006 (4)
O40.080 (4)0.075 (5)0.085 (5)0.023 (4)0.014 (4)0.001 (4)
O50.099 (5)0.150 (8)0.104 (6)0.062 (6)0.009 (4)0.035 (5)
O60.043 (3)0.127 (6)0.087 (4)0.011 (4)0.017 (3)0.026 (4)
C10.041 (4)0.077 (7)0.054 (5)0.008 (5)0.009 (4)0.006 (5)
C20.038 (4)0.071 (6)0.050 (4)0.014 (4)0.004 (3)0.006 (4)
C30.040 (4)0.061 (6)0.050 (4)0.007 (4)0.007 (4)0.001 (4)
C40.051 (4)0.061 (5)0.047 (4)0.002 (4)0.003 (4)0.002 (4)
C50.064 (5)0.060 (6)0.061 (5)0.007 (5)0.000 (4)0.006 (5)
C60.066 (6)0.107 (10)0.074 (7)0.005 (7)0.011 (6)0.021 (7)
C70.068 (5)0.052 (6)0.053 (5)0.002 (5)0.004 (4)0.012 (4)
C80.072 (6)0.081 (7)0.063 (6)0.004 (6)0.014 (5)0.006 (5)
C90.096 (7)0.088 (8)0.085 (7)0.001 (7)0.037 (6)0.006 (7)
C100.155 (11)0.080 (8)0.069 (7)0.001 (9)0.037 (8)0.007 (6)
C110.154 (10)0.071 (8)0.064 (7)0.012 (8)0.006 (7)0.001 (6)
C120.099 (6)0.069 (7)0.058 (5)0.004 (6)0.001 (5)0.008 (5)
C130.044 (4)0.076 (7)0.073 (6)0.006 (5)0.007 (4)0.009 (5)
C140.052 (4)0.093 (8)0.074 (6)0.003 (5)0.003 (4)0.020 (6)
C150.050 (4)0.060 (6)0.055 (5)0.006 (4)0.001 (4)0.002 (5)
C160.076 (6)0.077 (8)0.129 (9)0.033 (6)0.020 (7)0.002 (7)
C170.075 (6)0.098 (9)0.105 (8)0.001 (7)0.015 (6)0.014 (7)
C180.132 (9)0.053 (6)0.065 (6)0.013 (7)0.008 (6)0.002 (5)
C190.100 (6)0.066 (7)0.069 (6)0.007 (6)0.001 (5)0.011 (5)
C200.122 (8)0.089 (8)0.065 (6)0.020 (8)0.023 (6)0.012 (6)
C210.105 (8)0.082 (8)0.087 (8)0.007 (7)0.024 (7)0.002 (6)
C220.078 (6)0.075 (8)0.145 (10)0.006 (6)0.002 (8)0.011 (9)
C230.087 (7)0.087 (9)0.098 (8)0.001 (7)0.027 (6)0.000 (7)
C240.070 (5)0.098 (8)0.050 (5)0.005 (6)0.003 (4)0.012 (6)
C250.115 (8)0.146 (12)0.092 (7)0.013 (9)0.019 (7)0.051 (8)
C260.182 (12)0.073 (8)0.075 (7)0.005 (9)0.005 (8)0.022 (6)
C270.128 (8)0.127 (10)0.065 (6)0.014 (9)0.019 (6)0.002 (7)
Geometric parameters (Å, º) top
O1—C11.209 (9)C14—H14B0.9800
O2—C11.327 (10)C14—H14C0.9800
O2—C241.489 (10)C15—C161.487 (13)
O3—C61.341 (12)C15—H15A0.9900
O3—C41.447 (9)C15—H15B0.9900
O4—C61.345 (11)C16—C171.286 (8)
O4—C51.438 (10)C16—H16A0.9500
O5—C61.195 (11)C17—C181.548 (12)
O6—C131.208 (9)C17—H17A0.9500
C1—C21.542 (11)C18—C191.3900
C2—C151.544 (12)C18—C231.3900
C2—C31.550 (11)C19—C201.3900
C2—C131.564 (12)C19—H19A0.9500
C3—C41.476 (10)C20—C211.3900
C3—H3A0.9900C20—H20A0.9500
C3—H3B0.9900C21—C221.3900
C4—C51.539 (11)C21—H21A0.9500
C4—H4A1.0000C22—C231.3900
C5—C71.500 (9)C22—H22A0.9500
C5—H5A1.0000C23—H23A0.9500
C7—C81.3900C24—C261.512 (14)
C7—C121.3900C24—C251.515 (14)
C8—C91.3900C24—C271.528 (14)
C8—H8A0.9500C25—H25A0.9800
C9—C101.3900C25—H25B0.9800
C9—H9A0.9500C25—H25C0.9800
C10—C111.3900C26—H26A0.9800
C10—H10A0.9500C26—H26B0.9800
C11—C121.3900C26—H26C0.9800
C11—H11A0.9500C27—H27A0.9800
C12—H12A0.9500C27—H27B0.9800
C13—C141.511 (11)C27—H27C0.9800
C14—H14A0.9800
C1—O2—C24121.3 (7)C13—C14—H14C109.5
C6—O3—C4109.6 (6)H14A—C14—H14C109.5
C6—O4—C5110.3 (8)H14B—C14—H14C109.5
O1—C1—O2127.8 (8)C16—C15—C2112.0 (6)
O1—C1—C2122.8 (9)C16—C15—H15A109.2
O2—C1—C2109.4 (7)C2—C15—H15A109.2
C1—C2—C15109.1 (7)C16—C15—H15B109.2
C1—C2—C3112.5 (7)C2—C15—H15B109.2
C15—C2—C3113.0 (6)H15A—C15—H15B107.9
C1—C2—C13107.5 (6)C17—C16—C15125.7 (10)
C15—C2—C13106.7 (8)C17—C16—H16A117.2
C3—C2—C13107.8 (7)C15—C16—H16A117.2
C4—C3—C2115.3 (6)C16—C17—C18124.6 (10)
C4—C3—H3A108.5C16—C17—H17A117.7
C2—C3—H3A108.5C18—C17—H17A117.7
C4—C3—H3B108.5C19—C18—C23120.0
C2—C3—H3B108.5C19—C18—C17112.7 (6)
H3A—C3—H3B107.5C23—C18—C17127.3 (6)
O3—C4—C3111.6 (7)C20—C19—C18120.0
O3—C4—C5102.4 (7)C20—C19—H19A120.0
C3—C4—C5115.2 (6)C18—C19—H19A120.0
O3—C4—H4A109.1C19—C20—C21120.0
C3—C4—H4A109.1C19—C20—H20A120.0
C5—C4—H4A109.1C21—C20—H20A120.0
O4—C5—C7110.1 (6)C22—C21—C20120.0
O4—C5—C4102.0 (6)C22—C21—H21A120.0
C7—C5—C4116.1 (7)C20—C21—H21A120.0
O4—C5—H5A109.4C21—C22—C23120.0
C7—C5—H5A109.4C21—C22—H22A120.0
C4—C5—H5A109.4C23—C22—H22A120.0
O5—C6—O3125.2 (10)C22—C23—C18120.0
O5—C6—O4123.9 (11)C22—C23—H23A120.0
O3—C6—O4110.8 (9)C18—C23—H23A120.0
C8—C7—C12120.0O2—C24—C26100.5 (7)
C8—C7—C5120.4 (5)O2—C24—C25109.8 (8)
C12—C7—C5119.5 (5)C26—C24—C25115.6 (13)
C9—C8—C7120.0O2—C24—C27107.6 (8)
C9—C8—H8A120.0C26—C24—C27109.8 (9)
C7—C8—H8A120.0C25—C24—C27112.6 (10)
C8—C9—C10120.0C24—C25—H25A109.5
C8—C9—H9A120.0C24—C25—H25B109.5
C10—C9—H9A120.0H25A—C25—H25B109.5
C11—C10—C9120.0C24—C25—H25C109.5
C11—C10—H10A120.0H25A—C25—H25C109.5
C9—C10—H10A120.0H25B—C25—H25C109.5
C10—C11—C12120.0C24—C26—H26A109.5
C10—C11—H11A120.0C24—C26—H26B109.5
C12—C11—H11A120.0H26A—C26—H26B109.5
C11—C12—C7120.0C24—C26—H26C109.5
C11—C12—H12A120.0H26A—C26—H26C109.5
C7—C12—H12A120.0H26B—C26—H26C109.5
O6—C13—C14121.3 (7)C24—C27—H27A109.5
O6—C13—C2120.2 (8)C24—C27—H27B109.5
C14—C13—C2118.5 (8)H27A—C27—H27B109.5
C13—C14—H14A109.5C24—C27—H27C109.5
C13—C14—H14B109.5H27A—C27—H27C109.5
H14A—C14—H14B109.5H27B—C27—H27C109.5
C24—O2—C1—O11.1 (11)C7—C8—C9—C100.0
C24—O2—C1—C2179.0 (6)C8—C9—C10—C110.0
O1—C1—C2—C156.8 (10)C9—C10—C11—C120.0
O2—C1—C2—C15175.2 (6)C10—C11—C12—C70.0
O1—C1—C2—C3133.0 (8)C8—C7—C12—C110.0
O2—C1—C2—C349.0 (8)C5—C7—C12—C11178.0 (6)
O1—C1—C2—C13108.5 (9)C1—C2—C13—O6144.0 (9)
O2—C1—C2—C1369.5 (9)C15—C2—C13—O699.1 (10)
C1—C2—C3—C463.4 (9)C3—C2—C13—O622.5 (12)
C15—C2—C3—C460.6 (10)C1—C2—C13—C1439.9 (12)
C13—C2—C3—C4178.2 (7)C15—C2—C13—C1477.0 (9)
C6—O3—C4—C3142.5 (7)C3—C2—C13—C14161.4 (7)
C6—O3—C4—C518.7 (8)C1—C2—C15—C16172.8 (7)
C2—C3—C4—O372.6 (10)C3—C2—C15—C1661.3 (9)
C2—C3—C4—C5171.2 (7)C13—C2—C15—C1656.9 (9)
C6—O4—C5—C7141.5 (7)C2—C15—C16—C17108.2 (11)
C6—O4—C5—C417.6 (9)C15—C16—C17—C18174.1 (8)
O3—C4—C5—O421.1 (7)C16—C17—C18—C19168.3 (10)
C3—C4—C5—O4142.4 (8)C16—C17—C18—C2310.7 (15)
O3—C4—C5—C7140.8 (7)C23—C18—C19—C200.0
C3—C4—C5—C797.9 (9)C17—C18—C19—C20179.1 (7)
C4—O3—C6—O5169.6 (10)C18—C19—C20—C210.0
C4—O3—C6—O48.5 (10)C19—C20—C21—C220.0
C5—O4—C6—O5175.1 (10)C20—C21—C22—C230.0
C5—O4—C6—O36.7 (10)C21—C22—C23—C180.0
O4—C5—C7—C853.3 (8)C19—C18—C23—C220.0
C4—C5—C7—C861.9 (8)C17—C18—C23—C22178.9 (8)
O4—C5—C7—C12124.7 (6)C1—O2—C24—C26174.4 (8)
C4—C5—C7—C12120.1 (6)C1—O2—C24—C2552.1 (13)
C12—C7—C8—C90.0C1—O2—C24—C2770.8 (9)
C5—C7—C8—C9178.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg0.953.033.757135

Experimental details

Crystal data
Chemical formulaC27H30O6
Mr450.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)6.4707 (2), 7.7258 (4), 49.803 (3)
V3)2489.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.25 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.817, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4524, 1806, 1188
Rint0.070
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.256, 1.10
No. of reflections1806
No. of parameters274
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.68
Absolute structureIn the absence of significant anomalous scattering effects, 770 Friedel pairs have been merged as equivalent data.

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg0.953.033.757134.6
 

Footnotes

Current address: Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England.

§Current address: Department of Chemistry, University of Adelaide, SA 5005, Australia.

Acknowledgements

The authors are grateful to Dr John E. Davies (University of Cambridge) for collecting the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFox, D. J., Parris, S., Pedersen, D. S., Tyzack, C. R. & Warren, S. (2006). Org. Biomol. Chem. 4, 3108–3112.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKolb, H., VanNiewenhze, M. S. & Sharpless, K. B. (1994). Chem. Rev. 94, 2483–2547.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds