metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-adamantylammonium) tetra­chloridocobaltate(II)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 November 2007; accepted 18 January 2008; online 25 January 2008)

The CoII atom in the title salt, (C10H18N)2[CoCl4], exists in a tetra­hedral coordination geometry. The asymmetric unit has two cations that lie on different special positions of site symmetry m; the anion lies on another special position of site symmetry m.

Related literature

Some amines do not form adducts with cobalt(II) chloride; in the reactions, the amines themselves are protonated. For 1,3-propane­diammonium tetra­chloridocobaltate, see: Guo et al. (1992[Guo, N., Lin, Y.-H., Zeng, G.-F. & Xi, S.-Q. (1992). Acta Cryst. C48, 542-543.]); for tricyclo­hexyl­ammonium chloride tetra­chloro­cobaltate, see: Geiser et al. (1984[Geiser, U., Willett, R. D. & Gaura, R. M. (1984). Acta Cryst. C40, 1346-1349.]); for 4,4′-bipyridinium tetra­chloridocobaltate, see: Barbour et al. (1996[Barbour, L. J., MacGillvray, L. R. & Atwood, J. L. (1996). Supramol. Chem. 7, 167-169.]) and Gillon et al. (2000[Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodriguez-Martin, Y. & Ruiz-Perez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897-3905.]); for bis­(4-dimethyl­amino)pyridinium tetra­chlorido­cobaltate, see: Haddad et al. (2003[Haddad, S., Vji, A. & Willett, R. D. (2003). J. Chem. Crystallogr. 33, 245-251.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H18N)2[CoCl4]

  • Mr = 505.24

  • Monoclinic, C 2/m

  • a = 30.6005 (6) Å

  • b = 7.3046 (1) Å

  • c = 11.0009 (2) Å

  • β = 104.087 (1)°

  • V = 2385.02 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 295 (2) K

  • 0.40 × 0.22 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.862

  • 11019 measured reflections

  • 2946 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.04

  • 2946 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2E⋯Cl1i 0.89 2.72 3.437 (3) 139
N2—H2E⋯Cl1i 0.89 2.72 3.437 (3) 139
N2—H2D⋯Cl1 0.89 2.43 3.218 (3) 147
N2—H2C⋯Cl1ii 0.89 2.43 3.218 (3) 148
N1—H1C⋯Cl1ii 0.89 2.58 3.366 (2) 147
N1—H1B⋯Cl3iii 0.89 2.46 3.322 (3) 164
N1—H1A⋯Cl1 0.89 2.58 3.366 (2) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (ii) x, -y+1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 (Version 1.2A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 (Version 1.2A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

Some amines do not form adducts with cobalt(II) chloride; in the reactions, the amines themselves are protonated. For 1,3-propanediammonium tetrachloridocobaltate, see Guo et al. (1992); for tricyclohexylammonium chloride tetrachlorocobaltate, see Geiser et al. (1984); for 4,4'-bipyridinium tetrachloridocobaltate, see Barbour et al. (1996) and Gillon et al. (2000);or bis(4-dimethylamino)pyridinium tetrachloridocobaltate, see Haddad et al. (2003).

Experimental top

1-Aminoadamantane (6.05 g, 40 mmol) and salicylaldehyde (5.01 g, 41 mmol) were heated in ethanol (50 ml) for 1 h. The N-salicylidene-1-aminoadamantane that separated was collected in 70% yield, m.p. 366 K. Cobalt dichloride hexahydrate (1 mmol) dissolved in ethanol (10 ml) was reacted with the Schiff base (2 mmol) dissolved in alcohol (5 ml) to give a blue solution. Blue crystals separated from the solution after three weeks.

Refinement top

H atoms were generated geometrically (C–H 0.97 to 0.98 Å, N–H 0.89 |%A) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 or 1.5Ueq of the parent atom.

Computing details top

Data collection: APEX2 (not SMART) (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of 2[C10H18N] [CoCl4]; displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. [Symmery code (i) x, –y, z.]
Bis(1-adamantylammonium) tetrachloridocobaltate(II) top
Crystal data top
(C10H18N)2[CoCl4]F(000) = 1060
Mr = 505.24Dx = 1.407 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3080 reflections
a = 30.6005 (6) Åθ = 2.6–22.3°
b = 7.3046 (1) ŵ = 1.18 mm1
c = 11.0009 (2) ÅT = 295 K
β = 104.087 (1)°Block, blue
V = 2385.02 (7) Å30.40 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2946 independent reflections
Radiation source: fine-focus sealed tube2115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2839
Tmin = 0.709, Tmax = 0.862k = 97
11019 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.5214P]
where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
(C10H18N)2[CoCl4]V = 2385.02 (7) Å3
Mr = 505.24Z = 4
Monoclinic, C2/mMo Kα radiation
a = 30.6005 (6) ŵ = 1.18 mm1
b = 7.3046 (1) ÅT = 295 K
c = 11.0009 (2) Å0.40 × 0.22 × 0.13 mm
β = 104.087 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2115 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.862Rint = 0.027
11019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
2946 reflectionsΔρmin = 0.49 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.18030 (9)0.50000.3577 (3)0.0615 (9)
H1A0.19210.40060.33150.092*0.50
H1B0.18630.49990.44100.092*
H1C0.19210.59950.33160.092*0.50
C10.13007 (10)0.50000.3050 (3)0.0452 (8)
C20.11951 (12)0.50000.1618 (3)0.0713 (13)
H2A0.13240.39230.13240.086*0.50
H2B0.13240.60770.13240.086*0.50
C30.06830 (12)0.50000.1108 (3)0.0668 (12)
H30.06110.50000.01900.080*
C40.04858 (9)0.3300 (5)0.1559 (2)0.0737 (9)
H4A0.06130.22140.12710.088*
H4B0.01620.32770.12210.088*
C50.05938 (9)0.3314 (4)0.2990 (2)0.0650 (8)
H50.04650.22220.32860.078*
C60.11079 (8)0.3304 (4)0.3507 (2)0.0568 (7)
H6A0.11810.32890.44150.068*
H6B0.12360.22190.32200.068*
C70.03975 (12)0.50000.3436 (3)0.0691 (12)
H7A0.04630.50000.43440.083*
H7B0.00730.50000.31160.083*
N20.30310 (10)0.50000.1192 (3)0.0888 (13)
H2C0.29040.59890.14310.133*0.50
H2D0.29050.40000.14190.133*0.50
H2E0.29910.50110.03630.133*
C80.35290 (10)0.50000.1809 (3)0.0483 (8)
C90.35959 (12)0.50000.3224 (3)0.0530 (9)
H9A0.34570.60770.34840.064*0.50
H9B0.34570.39230.34840.064*0.50
C100.40942 (14)0.50000.3820 (3)0.0678 (11)
H100.41420.50000.47340.081*
C110.43062 (10)0.3295 (5)0.3422 (3)0.0803 (10)
H11A0.41670.22120.36750.096*
H11B0.46250.32660.38260.096*
C120.42392 (9)0.3305 (4)0.1996 (2)0.0650 (7)
H12A0.43770.22080.17380.078*
C130.37368 (9)0.3305 (4)0.1389 (2)0.0608 (7)
H13A0.36870.33040.04830.073*
H13B0.35980.22160.16340.073*
C140.44527 (13)0.50000.1588 (4)0.0678 (11)
H14A0.47740.50000.19630.081*
H14B0.44080.50000.06840.081*
Co10.244385 (15)0.00000.28152 (4)0.04942 (16)
Cl10.22131 (2)0.24581 (10)0.15542 (7)0.0678 (2)
Cl20.21345 (4)0.00000.44545 (11)0.0907 (4)
Cl30.32036 (3)0.00000.34080 (8)0.0561 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0332 (15)0.098 (3)0.0501 (16)0.0000.0051 (12)0.000
C10.0284 (15)0.067 (2)0.0389 (15)0.0000.0054 (12)0.000
C20.0412 (19)0.132 (4)0.0404 (17)0.0000.0093 (15)0.000
C30.044 (2)0.120 (4)0.0323 (16)0.0000.0007 (14)0.000
C40.0519 (15)0.091 (2)0.0671 (16)0.0051 (16)0.0075 (12)0.0215 (16)
C50.0502 (15)0.070 (2)0.0668 (15)0.0193 (14)0.0016 (12)0.0114 (14)
C60.0507 (14)0.0539 (17)0.0582 (14)0.0007 (12)0.0012 (11)0.0010 (12)
C70.0373 (19)0.120 (4)0.0495 (19)0.0000.0107 (15)0.000
N20.0418 (18)0.133 (4)0.092 (3)0.0000.0173 (17)0.000
C80.0323 (16)0.061 (2)0.0527 (18)0.0000.0119 (14)0.000
C90.070 (2)0.046 (2)0.0535 (18)0.0000.0352 (17)0.000
C100.074 (3)0.091 (3)0.0362 (17)0.0000.0097 (17)0.000
C110.0753 (19)0.097 (3)0.0668 (17)0.0301 (19)0.0144 (14)0.0262 (17)
C120.0609 (16)0.067 (2)0.0719 (16)0.0209 (15)0.0250 (13)0.0030 (14)
C130.0659 (16)0.0614 (19)0.0603 (14)0.0134 (14)0.0253 (12)0.0185 (13)
C140.047 (2)0.093 (3)0.068 (2)0.0000.0234 (18)0.000
Co10.0436 (3)0.0467 (3)0.0547 (3)0.0000.0057 (2)0.000
Cl10.0664 (4)0.0531 (4)0.0775 (4)0.0119 (3)0.0051 (3)0.0092 (3)
Cl20.0614 (6)0.1401 (12)0.0780 (7)0.0000.0311 (5)0.000
Cl30.0433 (5)0.0660 (6)0.0573 (5)0.0000.0090 (4)0.000
Geometric parameters (Å, º) top
N1—C11.505 (4)N2—H2D0.8900
N1—H1A0.8900N2—H2E0.8900
N1—H1B0.8900C8—C131.515 (3)
N1—H1C0.8900C8—C13i1.515 (3)
C1—C6i1.509 (3)C8—C91.520 (4)
C1—C61.509 (3)C9—C101.506 (5)
C1—C21.530 (4)C9—H9A0.9700
C2—C31.530 (5)C9—H9B0.9700
C2—H2A0.9700C10—C111.517 (4)
C2—H2B0.9700C10—C11i1.517 (4)
C3—C4i1.516 (4)C10—H100.9800
C3—C41.516 (4)C11—C121.531 (4)
C3—H30.9800C11—H11A0.9700
C4—C51.528 (4)C11—H11B0.9700
C4—H4A0.9700C12—C141.518 (4)
C4—H4B0.9700C12—C131.520 (4)
C5—C71.504 (4)C12—H12A0.9800
C5—C61.537 (3)C13—H13A0.9700
C5—H50.9800C13—H13B0.9700
C6—H6A0.9700C14—C12i1.518 (4)
C6—H6B0.9700C14—H14A0.9700
C7—C5i1.504 (4)C14—H14B0.9700
C7—H7A0.9700Co1—Cl22.2313 (11)
C7—H7B0.9700Co1—Cl32.2567 (9)
N2—C81.510 (4)Co1—Cl12.2738 (7)
N2—H2C0.8900Co1—Cl1ii2.2738 (7)
C1—N1—H1A109.5C8—N2—H2E109.5
C1—N1—H1B109.5H2C—N2—H2E109.5
H1A—N1—H1B109.5H2D—N2—H2E109.5
C1—N1—H1C109.5N2—C8—C13108.41 (19)
H1A—N1—H1C109.5N2—C8—C13i108.41 (19)
H1B—N1—H1C109.5C13—C8—C13i109.6 (3)
N1—C1—C6i108.50 (17)N2—C8—C9109.3 (3)
N1—C1—C6108.50 (17)C13—C8—C9110.53 (19)
C6i—C1—C6110.3 (3)C13i—C8—C9110.53 (19)
N1—C1—C2109.7 (2)C10—C9—C8108.4 (3)
C6i—C1—C2109.94 (17)C10—C9—H9A110.0
C6—C1—C2109.94 (17)C8—C9—H9A110.0
C1—C2—C3108.5 (3)C10—C9—H9B110.0
C1—C2—H2A110.0C8—C9—H9B110.0
C3—C2—H2A110.0H9A—C9—H9B108.4
C1—C2—H2B110.0C9—C10—C11109.4 (2)
C3—C2—H2B110.0C9—C10—C11i109.4 (2)
H2A—C2—H2B108.4C11—C10—C11i110.3 (4)
C4i—C3—C4110.0 (3)C9—C10—H10109.2
C4i—C3—C2109.49 (19)C11—C10—H10109.2
C4—C3—C2109.49 (19)C11i—C10—H10109.2
C4i—C3—H3109.3C10—C11—C12109.4 (2)
C4—C3—H3109.3C10—C11—H11A109.8
C2—C3—H3109.3C12—C11—H11A109.8
C3—C4—C5109.2 (2)C10—C11—H11B109.8
C3—C4—H4A109.8C12—C11—H11B109.8
C5—C4—H4A109.8H11A—C11—H11B108.2
C3—C4—H4B109.8C14—C12—C13109.4 (3)
C5—C4—H4B109.8C14—C12—C11110.3 (3)
H4A—C4—H4B108.3C13—C12—C11108.6 (2)
C7—C5—C4109.8 (3)C14—C12—H12A109.5
C7—C5—C6109.7 (2)C13—C12—H12A109.5
C4—C5—C6109.0 (2)C11—C12—H12A109.5
C7—C5—H5109.4C8—C13—C12108.7 (2)
C4—C5—H5109.4C8—C13—H13A109.9
C6—C5—H5109.4C12—C13—H13A109.9
C1—C6—C5108.7 (2)C8—C13—H13B109.9
C1—C6—H6A109.9C12—C13—H13B109.9
C5—C6—H6A109.9H13A—C13—H13B108.3
C1—C6—H6B109.9C12i—C14—C12109.3 (3)
C5—C6—H6B109.9C12i—C14—H14A109.8
H6A—C6—H6B108.3C12—C14—H14A109.8
C5—C7—C5i109.9 (3)C12i—C14—H14B109.8
C5—C7—H7A109.7C12—C14—H14B109.8
C5i—C7—H7A109.7H14A—C14—H14B108.3
C5—C7—H7B109.7Cl2—Co1—Cl3112.11 (4)
C5i—C7—H7B109.7Cl2—Co1—Cl1111.30 (3)
H7A—C7—H7B108.2Cl3—Co1—Cl1108.75 (3)
C8—N2—H2C109.5Cl2—Co1—Cl1ii111.30 (3)
C8—N2—H2D109.5Cl3—Co1—Cl1ii108.74 (3)
H2C—N2—H2D109.5Cl1—Co1—Cl1ii104.31 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2E···Cl1iii0.892.723.437 (3)139
N2—H2E···Cl1iii0.892.723.437 (3)139
N2—H2D···Cl10.892.433.218 (3)147
N2—H2C···Cl1i0.892.433.218 (3)148
N1—H1C···Cl1i0.892.583.366 (2)147
N1—H1B···Cl3iv0.892.463.322 (3)164
N1—H1A···Cl10.892.583.366 (2)147
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C10H18N)2[CoCl4]
Mr505.24
Crystal system, space groupMonoclinic, C2/m
Temperature (K)295
a, b, c (Å)30.6005 (6), 7.3046 (1), 11.0009 (2)
β (°) 104.087 (1)
V3)2385.02 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.40 × 0.22 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11019, 2946, 2115
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.05
No. of reflections2946
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.49

Computer programs: APEX2 (not SMART) (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2E···Cl1i0.892.723.437 (3)138.5
N2—H2E···Cl1i0.892.723.437 (3)138.5
N2—H2D···Cl10.892.433.218 (3)147.2
N2—H2C···Cl1ii0.892.433.218 (3)147.5
N1—H1C···Cl1ii0.892.583.366 (2)147.2
N1—H1B···Cl3iii0.892.463.322 (3)163.7
N1—H1A···Cl10.892.583.366 (2)147.3
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBarbour, L. J., MacGillvray, L. R. & Atwood, J. L. (1996). Supramol. Chem. 7, 167–169.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 (Version 1.2A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiser, U., Willett, R. D. & Gaura, R. M. (1984). Acta Cryst. C40, 1346–1349.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodriguez-Martin, Y. & Ruiz-Perez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897–3905.  Web of Science CSD CrossRef Google Scholar
First citationGuo, N., Lin, Y.-H., Zeng, G.-F. & Xi, S.-Q. (1992). Acta Cryst. C48, 542–543.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaddad, S., Vji, A. & Willett, R. D. (2003). J. Chem. Crystallogr. 33, 245–251.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds