organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(8-quinol­yl)pyridine-2,6-dicarboxamide

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 29 October 2007; accepted 20 November 2007; online 11 January 2008)

In the mol­ecule of the title compound, C25H17N5O2, the pyridyl ring is oriented at dihedral angles of 8.90 (3) and 28.67 (4)° with respect to the two planar quinolyl ring systems. Intra­molecular N—H⋯N hydrogen bonds result in the formation of four planar five-membered rings, two of which are nearly coplanar with the adjacent quinolyl ring systems.

Related literature

For related literature, see: Amirnasr et al. (2002[Amirnasr, M., Schenk, K. J. & Meghdadi, S. (2002). Inorg. Chim. Acta, 338, 19-26.]); Meghdadi, Amirnasr et al. (2006[Meghdadi, S., Amirnasr, M., Langer, V. & Zamanpoor, A. (2006). Can. J. Chem. 84, 971-978.]); Meghdadi, Khavasi et al. (2006[Meghdadi, S., Khavasi, H. R. & Nalchigar, S. (2006). Acta Cryst. E62, o5492-o5493.]); Belda & Moberg (2005[Belda, O. & Moberg, C. (2005). Coord. Chem. Rev. 249, 727-740.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H17N5O2

  • Mr = 419.44

  • Orthorhombic, P 21 21 21

  • a = 4.5443 (13) Å

  • b = 17.030 (6) Å

  • c = 25.984 (8) Å

  • V = 2010.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.35 × 0.12 × 0.01 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: none

  • 20853 measured reflections

  • 2822 independent reflections

  • 2161 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.115

  • S = 1.34

  • 2822 reflections

  • 357 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2b⋯N1 0.86 (4) 2.23 (4) 2.638 (5) 109 (3)
N2—H2b⋯N3 0.86 (4) 2.19 (4) 2.666 (5) 115 (3)
N4—H4b⋯N3 0.93 (4) 2.23 (3) 2.669 (5) 108 (2)
N4—H4b⋯N5 0.93 (4) 2.23 (3) 2.667 (5) 108 (2)

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.31) and X-RED32 (Version 1.28b). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.31) and X-RED32 (Version 1.28b). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The carboxamide [C(O)NH] group, ubiquitous throughout the nature in the primary structure of proteins, is an important ligand construction unit for coordination chemists. Pyridine or qunolyl carboxamides, a burgeoning class of multidentate ligands containing this linkage, are available from condensation reactions between pyridyl or qunolyl-bearing amines and carboxylic acid, promoted by coupling agents such as triphenylphosphite (Amirnasr et al., 2002;Meghdadi, Amirnasr et al. (2006); Meghdadi, Khavasi et al. (2006). These ligands have found use in asymmetric catalysis (Belda & Moberg, 2005). As part of our ongoing studies in this area, we report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (N1/C1—C4/C9), B (C4—C9), C (N3/C11—C15), D (C17—C22) and E (N5/C17/C22—C25) are, of course, planar and rings A, B and D, E are also co-planar with dihedral angles of A/B = 1.01 (2)° and D/E = 0.52 (3)°. Ring C is oriented with respect to the co-planar rings at dihedral angles of 8.90 (4)° and 28.93 (3)°, respectively. The co-planar rings are oriented at a dihedral angle of 24.68 (3)°.

The intramolecular N—H···N hydrogen bonds (Table 1) result in the formation of the planar five-membered rings; F (N1/N2/C8/C9/H2b), G (N2/N3/C10/C11/H2b), H (N3/N4/C15/C16/H4b) and I (N4/N5/C17/C18/H4b), in which rings H and I are also nearly co-planar with the adjacent co-planar rings A, B and D, E at dihedral angles of 4.44 (4)° and 6.06 (5)°, respectively.

Related literature top

For related literature, see: Amirnasr et al. (2002); Meghdadi, Amirnasr et al. (2006); Meghdadi, Khavasi et al. (2006); Belda & Moberg (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

2,6-Pyridinedicarboxylic acid (1.00 g, 6 mmol) was suspended in pyridine (40 ml). 8-aminoquinoline (1.73 g, 12 mmol) was added to the mixture, and the mixture was stirred at 313–318 K, for 10 min. Triphenylphosphite (12 mmol, 3.2 ml) was added dropwise to the resulting solution. The temperature of the reaction mixture was increased to 363–373 K, and the mixture was magnetically stirred for 4 h. After cooling to room temperature, the reaction mixture was left in the hood for 24 h. The white precipitate was filtered off. Recrystallization was achieved by diethyl ether diffusion into a chloroform solution of the compound at room temperature (yield; 87%, m.p. 549 K).

Refinement top

H atoms were located in difference syntheses and refined isotropically [C—H = 0.92 (4)–1.00 (4) Å and Uiso(H) = 0.025 (10)–0.077 (17) Å2; N—H = 0.86 (4) and 0.93 (4) Å, Uiso(H) = 0.029 (10) and 0.035 (11) Å2].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
N,N'-Bis(8-quinolyl)pyridine-2,6-dicarboxamide top
Crystal data top
C25H17N5O2F(000) = 872
Mr = 419.44Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2000 reflections
a = 4.5443 (13) ŵ = 0.09 mm1
b = 17.030 (6) ÅT = 294 K
c = 25.984 (8) ÅPlate, colorless
V = 2010.9 (11) Å30.35 × 0.12 × 0.01 mm
Z = 4
Data collection top
STOE IPDS II
diffractometer
Rint = 0.108
rotation method scansθmax = 28.1°, θmin = 1.6°
20853 measured reflectionsh = 55
2822 independent reflectionsk = 2222
2161 reflections with I > 2σ(I)l = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.078 w = 1/[σ2(Fo2) + (0.0157P)2 + 0.8034P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.34Δρmax = 0.19 e Å3
2822 reflectionsΔρmin = 0.19 e Å3
357 parameters
Crystal data top
C25H17N5O2V = 2010.9 (11) Å3
Mr = 419.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.5443 (13) ŵ = 0.09 mm1
b = 17.030 (6) ÅT = 294 K
c = 25.984 (8) Å0.35 × 0.12 × 0.01 mm
Data collection top
STOE IPDS II
diffractometer
2161 reflections with I > 2σ(I)
20853 measured reflectionsRint = 0.108
2822 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.34Δρmax = 0.19 e Å3
2822 reflectionsΔρmin = 0.19 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1830 (9)0.20409 (17)0.25242 (11)0.0583 (9)
O20.7396 (9)0.11039 (19)0.00052 (11)0.0661 (10)
N10.4455 (8)0.00267 (19)0.23061 (13)0.0428 (9)
N20.8476 (9)0.1090 (2)0.23237 (13)0.0403 (8)
H2B0.772 (10)0.087 (2)0.2057 (14)0.035 (11)*
N30.9289 (8)0.13333 (18)0.13200 (13)0.0394 (8)
N40.6766 (10)0.02863 (19)0.06957 (12)0.0482 (10)
H4B0.737 (9)0.0212 (19)0.1036 (14)0.029 (10)*
N50.6672 (9)0.10469 (19)0.12342 (12)0.0433 (9)
C10.2521 (11)0.0600 (3)0.22863 (18)0.0497 (12)
H10.158 (9)0.0703 (19)0.1965 (13)0.025 (10)*
C20.1689 (12)0.1062 (3)0.2710 (2)0.0546 (12)
H20.030 (12)0.147 (3)0.2656 (17)0.062 (15)*
C30.2898 (12)0.0903 (2)0.31741 (19)0.0485 (11)
H30.242 (11)0.118 (2)0.3467 (16)0.045 (12)*
C40.4986 (10)0.0292 (2)0.32281 (15)0.0398 (10)
C50.6346 (12)0.0079 (3)0.36987 (16)0.0501 (13)
H50.586 (9)0.0384 (19)0.4011 (14)0.029 (10)*
C60.8307 (12)0.0518 (3)0.37084 (17)0.0498 (12)
H60.923 (11)0.063 (2)0.4024 (18)0.058 (14)*
C70.9085 (11)0.0937 (3)0.32581 (16)0.0425 (11)
H71.047 (10)0.134 (2)0.3262 (15)0.045 (13)*
C80.7823 (10)0.0742 (2)0.27974 (15)0.0369 (9)
C90.5688 (10)0.0130 (2)0.27723 (15)0.0359 (9)
C101.0437 (11)0.1664 (2)0.22071 (16)0.0403 (10)
C111.0722 (10)0.1816 (2)0.16408 (16)0.0402 (10)
C121.2395 (12)0.2443 (3)0.14696 (19)0.0534 (13)
H121.337 (12)0.277 (3)0.1714 (17)0.062 (15)*
C131.2533 (13)0.2591 (3)0.0948 (2)0.0595 (14)
H131.357 (13)0.304 (3)0.0808 (18)0.077 (17)*
C141.1027 (13)0.2106 (3)0.06103 (19)0.0559 (14)
H141.103 (12)0.221 (2)0.0244 (17)0.065 (15)*
C150.9457 (11)0.1478 (2)0.08149 (16)0.0422 (10)
C160.7765 (12)0.0943 (2)0.04607 (15)0.0484 (12)
C170.5007 (9)0.1025 (2)0.07963 (14)0.0359 (9)
C180.5091 (11)0.0328 (2)0.04887 (15)0.0392 (10)
C190.3521 (12)0.0288 (3)0.00420 (16)0.0513 (12)
H190.354 (10)0.018 (2)0.0165 (14)0.046 (12)*
C200.1806 (13)0.0928 (3)0.01167 (18)0.0579 (13)
H200.092 (12)0.090 (2)0.0438 (17)0.060 (14)*
C210.1634 (12)0.1597 (3)0.01678 (18)0.0526 (12)
H210.059 (12)0.206 (2)0.0069 (18)0.068 (16)*
C220.3258 (11)0.1664 (2)0.06304 (15)0.0426 (10)
C230.3234 (12)0.2336 (3)0.09477 (18)0.0506 (12)
H230.205 (11)0.277 (2)0.0844 (15)0.053 (13)*
C240.4870 (12)0.2346 (3)0.13880 (19)0.0508 (12)
H240.480 (10)0.280 (2)0.1630 (15)0.041 (11)*
C250.6587 (12)0.1694 (3)0.15076 (17)0.0496 (12)
H250.769 (11)0.170 (2)0.1836 (14)0.045 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.073 (2)0.0501 (17)0.0519 (17)0.0201 (19)0.008 (2)0.0062 (14)
O20.094 (3)0.067 (2)0.0376 (16)0.015 (2)0.006 (2)0.0164 (14)
N10.038 (2)0.0422 (19)0.048 (2)0.0026 (18)0.0001 (19)0.0046 (16)
N20.047 (2)0.0407 (18)0.0333 (18)0.0031 (19)0.0024 (18)0.0000 (15)
N30.042 (2)0.0364 (17)0.0394 (18)0.0006 (17)0.0025 (18)0.0065 (14)
N40.070 (3)0.0424 (19)0.0318 (18)0.002 (2)0.006 (2)0.0033 (15)
N50.050 (2)0.0441 (19)0.0360 (18)0.0030 (19)0.0062 (18)0.0019 (15)
C10.046 (3)0.049 (3)0.054 (3)0.001 (2)0.002 (3)0.011 (2)
C20.050 (3)0.045 (3)0.069 (3)0.008 (3)0.015 (3)0.003 (2)
C30.046 (3)0.041 (2)0.058 (3)0.007 (2)0.017 (3)0.010 (2)
C40.040 (2)0.037 (2)0.042 (2)0.011 (2)0.010 (2)0.0033 (17)
C50.059 (3)0.055 (3)0.036 (2)0.018 (3)0.014 (2)0.009 (2)
C60.054 (3)0.061 (3)0.035 (2)0.014 (3)0.005 (3)0.004 (2)
C70.043 (3)0.046 (2)0.039 (2)0.008 (2)0.002 (2)0.0035 (19)
C80.037 (2)0.036 (2)0.038 (2)0.0098 (19)0.003 (2)0.0023 (16)
C90.036 (2)0.0315 (19)0.040 (2)0.0049 (19)0.007 (2)0.0035 (16)
C100.046 (3)0.033 (2)0.042 (2)0.002 (2)0.002 (2)0.0006 (17)
C110.042 (3)0.034 (2)0.044 (2)0.002 (2)0.002 (2)0.0016 (17)
C120.062 (3)0.042 (2)0.057 (3)0.012 (3)0.004 (3)0.000 (2)
C130.070 (4)0.041 (2)0.067 (3)0.019 (3)0.011 (3)0.012 (2)
C140.069 (4)0.049 (3)0.049 (3)0.003 (3)0.003 (3)0.015 (2)
C150.048 (3)0.034 (2)0.044 (2)0.004 (2)0.007 (2)0.0079 (17)
C160.061 (3)0.045 (2)0.039 (2)0.005 (2)0.002 (2)0.0093 (18)
C170.035 (2)0.040 (2)0.032 (2)0.0021 (19)0.0022 (18)0.0007 (16)
C180.047 (3)0.041 (2)0.0297 (19)0.001 (2)0.002 (2)0.0025 (16)
C190.063 (3)0.054 (3)0.037 (2)0.002 (3)0.006 (3)0.006 (2)
C200.061 (3)0.074 (3)0.039 (2)0.004 (3)0.016 (3)0.005 (2)
C210.050 (3)0.059 (3)0.049 (3)0.008 (3)0.005 (3)0.007 (2)
C220.040 (3)0.044 (2)0.044 (2)0.001 (2)0.003 (2)0.0070 (18)
C230.051 (3)0.040 (2)0.061 (3)0.007 (2)0.003 (3)0.004 (2)
C240.057 (3)0.039 (2)0.056 (3)0.000 (2)0.000 (3)0.010 (2)
C250.055 (3)0.050 (3)0.044 (2)0.001 (3)0.009 (3)0.0064 (19)
Geometric parameters (Å, º) top
C1—N11.314 (6)C14—C151.392 (6)
C1—C21.406 (6)C14—H140.97 (4)
C1—H10.95 (4)C15—N31.338 (5)
C2—C31.352 (7)C15—C161.506 (6)
C2—H20.94 (5)C16—O21.227 (5)
C3—C41.416 (6)C16—N41.353 (5)
C3—H30.92 (4)C17—N51.367 (5)
C4—C51.418 (6)C17—C221.414 (6)
C4—C91.421 (5)C17—C181.432 (5)
C5—C61.351 (7)C18—C191.364 (6)
C5—H50.99 (4)C18—N41.401 (5)
C6—C71.416 (6)C19—C201.402 (7)
C6—H60.94 (5)C19—H190.96 (4)
C7—C81.369 (6)C20—C211.360 (7)
C7—H70.93 (4)C20—H200.93 (5)
C8—N21.398 (5)C21—C221.415 (6)
C8—C91.425 (6)C21—H210.95 (5)
C9—N11.361 (5)C22—C231.411 (6)
C10—O11.222 (5)C23—C241.365 (7)
C10—N21.357 (5)C23—H230.95 (4)
C10—C111.500 (6)C24—C251.392 (7)
C11—N31.339 (5)C24—H241.00 (4)
C11—C121.385 (6)C25—N51.312 (5)
C12—C131.381 (6)C25—H250.99 (4)
C12—H120.95 (5)N2—H2B0.86 (4)
C13—C141.385 (7)N4—H4B0.93 (4)
C13—H130.97 (5)
N1—C1—C2124.4 (5)N3—C15—C14123.1 (4)
N1—C1—H1118 (2)N3—C15—C16117.3 (4)
C2—C1—H1118 (2)C14—C15—C16119.6 (4)
C3—C2—C1118.5 (5)O2—C16—N4125.1 (4)
C3—C2—H2123 (3)O2—C16—C15121.6 (4)
C1—C2—H2118 (3)N4—C16—C15113.3 (3)
C2—C3—C4120.5 (4)N5—C17—C22123.0 (4)
C2—C3—H3123 (3)N5—C17—C18118.2 (4)
C4—C3—H3117 (3)C22—C17—C18118.8 (4)
C3—C4—C5124.5 (4)C19—C18—N4125.0 (4)
C3—C4—C9116.1 (4)C19—C18—C17120.1 (4)
C5—C4—C9119.4 (4)N4—C18—C17114.8 (4)
C6—C5—C4119.7 (4)C18—C19—C20120.2 (4)
C6—C5—H5122 (2)C18—C19—H19121 (3)
C4—C5—H5118 (2)C20—C19—H19119 (3)
C5—C6—C7121.9 (5)C21—C20—C19121.6 (5)
C5—C6—H6118 (3)C21—C20—H20121 (3)
C7—C6—H6120 (3)C19—C20—H20118 (3)
C8—C7—C6119.7 (4)C20—C21—C22119.9 (5)
C8—C7—H7118 (3)C20—C21—H21125 (3)
C6—C7—H7122 (3)C22—C21—H21115 (3)
C7—C8—N2125.3 (4)C23—C22—C17116.7 (4)
C7—C8—C9120.2 (4)C23—C22—C21123.9 (4)
N2—C8—C9114.5 (4)C17—C22—C21119.4 (4)
N1—C9—C4123.4 (4)C24—C23—C22119.8 (4)
N1—C9—C8117.7 (3)C24—C23—H23123 (3)
C4—C9—C8119.0 (4)C22—C23—H23118 (3)
O1—C10—N2124.7 (4)C23—C24—C25118.8 (4)
O1—C10—C11121.7 (4)C23—C24—H24121 (2)
N2—C10—C11113.6 (4)C25—C24—H24120 (2)
N3—C11—C12122.7 (4)N5—C25—C24124.4 (4)
N3—C11—C10117.6 (4)N5—C25—H25118 (2)
C12—C11—C10119.7 (4)C24—C25—H25118 (2)
C13—C12—C11118.8 (5)C1—N1—C9117.1 (4)
C13—C12—H12122 (3)C10—N2—C8129.9 (4)
C11—C12—H12119 (3)C10—N2—H2B113 (3)
C12—C13—C14119.3 (4)C8—N2—H2B116 (3)
C12—C13—H13122 (3)C15—N3—C11118.0 (4)
C14—C13—H13118 (3)C16—N4—C18128.8 (4)
C13—C14—C15118.0 (4)C16—N4—H4B116 (2)
C13—C14—H14121 (3)C18—N4—H4B115 (2)
C15—C14—H14121 (3)C25—N5—C17117.2 (4)
N1—C1—C2—C31.4 (7)N5—C17—C18—N44.1 (6)
C1—C2—C3—C40.9 (7)C22—C17—C18—N4177.1 (4)
C2—C3—C4—C5179.4 (5)N4—C18—C19—C20177.0 (5)
C2—C3—C4—C90.1 (6)C17—C18—C19—C200.3 (7)
C3—C4—C5—C6179.7 (4)C18—C19—C20—C210.6 (8)
C9—C4—C5—C60.5 (7)C19—C20—C21—C221.3 (8)
C4—C5—C6—C70.7 (7)N5—C17—C22—C231.5 (6)
C5—C6—C7—C80.3 (7)C18—C17—C22—C23179.7 (4)
C6—C7—C8—N2177.6 (4)N5—C17—C22—C21179.0 (4)
C6—C7—C8—C91.3 (6)C18—C17—C22—C210.2 (6)
C3—C4—C9—N10.4 (6)C20—C21—C22—C23179.5 (5)
C5—C4—C9—N1178.9 (4)C20—C21—C22—C171.1 (7)
C3—C4—C9—C8178.6 (4)C17—C22—C23—C240.5 (7)
C5—C4—C9—C82.0 (6)C21—C22—C23—C24179.9 (5)
C7—C8—C9—N1178.4 (4)C22—C23—C24—C251.5 (8)
N2—C8—C9—N12.5 (5)C23—C24—C25—N52.7 (8)
C7—C8—C9—C42.5 (6)C2—C1—N1—C90.9 (7)
N2—C8—C9—C4176.6 (4)C4—C9—N1—C10.0 (6)
O1—C10—C11—N3174.9 (4)C8—C9—N1—C1179.0 (4)
N2—C10—C11—N36.4 (6)O1—C10—N2—C87.7 (7)
O1—C10—C11—C125.9 (7)C11—C10—N2—C8173.6 (4)
N2—C10—C11—C12172.8 (4)C7—C8—N2—C101.2 (7)
N3—C11—C12—C131.7 (7)C9—C8—N2—C10177.8 (4)
C10—C11—C12—C13177.5 (5)C14—C15—N3—C110.4 (7)
C11—C12—C13—C140.6 (8)C16—C15—N3—C11178.4 (4)
C12—C13—C14—C150.9 (8)C12—C11—N3—C151.2 (7)
C13—C14—C15—N31.5 (8)C10—C11—N3—C15178.0 (4)
C13—C14—C15—C16179.4 (5)O2—C16—N4—C181.6 (9)
N3—C15—C16—O2167.9 (5)C15—C16—N4—C18178.9 (4)
C14—C15—C16—O210.1 (7)C19—C18—N4—C1617.5 (8)
N3—C15—C16—N412.6 (6)C17—C18—N4—C16165.1 (5)
C14—C15—C16—N4169.3 (5)C24—C25—N5—C171.7 (7)
N5—C17—C18—C19178.4 (4)C22—C17—N5—C250.5 (6)
C22—C17—C18—C190.5 (6)C18—C17—N5—C25179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2b···N10.86 (4)2.23 (4)2.638 (5)109 (3)
N2—H2b···N30.86 (4)2.19 (4)2.666 (5)115 (3)
N4—H4b···N30.93 (4)2.23 (3)2.669 (5)108 (2)
N4—H4b···N50.93 (4)2.23 (3)2.667 (5)108 (2)

Experimental details

Crystal data
Chemical formulaC25H17N5O2
Mr419.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)4.5443 (13), 17.030 (6), 25.984 (8)
V3)2010.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.12 × 0.01
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20853, 2822, 2161
Rint0.108
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.115, 1.34
No. of reflections2822
No. of parameters357
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: X-AREA (Stoe & Cie, 2005), X-AREA, X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2b···N10.86 (4)2.23 (4)2.638 (5)109 (3)
N2—H2b···N30.86 (4)2.19 (4)2.666 (5)115 (3)
N4—H4b···N30.93 (4)2.23 (3)2.669 (5)108 (2)
N4—H4b···N50.93 (4)2.23 (3)2.667 (5)108 (2)
 

Acknowledgements

The authors acknowledge Isfahan University of Technology and Shahid Beheshti University for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmirnasr, M., Schenk, K. J. & Meghdadi, S. (2002). Inorg. Chim. Acta, 338, 19–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelda, O. & Moberg, C. (2005). Coord. Chem. Rev. 249, 727–740.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeghdadi, S., Amirnasr, M., Langer, V. & Zamanpoor, A. (2006). Can. J. Chem. 84, 971–978.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeghdadi, S., Khavasi, H. R. & Nalchigar, S. (2006). Acta Cryst. E62, o5492–o5493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2005). X-AREA (Version 1.31) and X-RED32 (Version 1.28b). Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds